При повышении давления равновесие. Химическое равновесие. Влияние изменения концентрации на смещение химического равновесия

Состояние химического равновесия нарушается при различных внешних воздействиях на систему: нагревании и охлаждении, изменении давления, добавлении и удалении отдельных веществ или растворителя. От этого нарушается равенство скоростей прямой и обратной реакций и происходит некоторый сдвиг состояния системы.

Смещением химического равновесия называется процесс, возникающий в равновесной системе в результате внешнего воздействия.

Смещение равновесия ведет к установлению в системе нового состояния равновесия, характеризующегося изменившимися концентрациями веществ.

Пример 10.6. В каком направлении сместится равновесие реакции при добавлении кислорода?

Решение. При добавлении кислорода увеличивается его концентрация, а следовательно, и скорость в прямом направлении. Равновесие сместится вправо. Этим повышается доля превращения S0 2 в S0 3 .

Смещение равновесия при любых воздействиях подчиняется принципу Ле Шателье (1884).

Внешнее воздействие на систему, находящуюся в состоянии равновесия, вызывает процесс, ведущий к уменьшению результата воздействия.

При решении конкретного вопроса о направлении смещения равновесия следует ясно понять сущность производимого воздействия и его результат. Например, изменение концентрации нельзя рассматривать в качестве воздействия на систему. В систему можно вносить или удалять вещества (эго воздействия), результатом чего будет изменение концентраций. Применение принципа Ле Шателье к практически важной реакции получения аммиака показано в табл. 10.1. В первых двух колонках указаны воздействие на систему и результат воздействия. Стрелки Т и >1 означают увеличение и уменьшение соответствующей характеристики. В колонке «Ответ системы» указаны изменения, противоположные результату воздействия. Эти изменения связаны с возникновением в системе прямой или обратной реакции. Некоторые затруднения вызывает уяснение влияния давления на состояние равновесия. Давление газовой смеси, согласно уравнению газового состояния, зависит от температуры и объема при данном количестве вещества, но система как таковая, имеющая определенный объем и температуру, может реагировать на изменение давления только изменением суммарного количества вещества в результате реакции. Из принципа Ле Шателье вытекает следствие: при увеличении давления равновесие смещается в направлении уменьшения суммы стехиометрических коэффициентов при веществах в газообразном состоянии.

Таблица 10.1

Применение принципа Ле Шателье на примере реакции N2 + ЗН2 2NH3, АгН° = -92 кДж/моль

В обратимых гетерогенных реакциях смещение равновесия связано с изменением концентраций газообразных и растворенных веществ. Изменение массы твердого вещества на положение равновесия в системе не влияет.

Смещение химического равновесия широко используют при проведении реакций в лабораториях и в технологических процессах. При этом речь идет не о том, чтобы достигнуть равновесия, а йотом его смещать. Процесс с самого начала планируют гак, чтобы установившееся равновесие оказалось оптимальным с точки зрения экономии наиболее ценных реагентов. Стоимость производства уменьшается при повышении выхода продукта. Это зависит от условий температуры и давления. На примере реакции получения аммиака показан принцип подхода к выбору условий процесса (знаки «+» и «-» символизируют желательный или нежелательный характер влияния на конечный результат).


Из приведенных данных следует, что при производстве аммиака желательно использовать высокое давление и изыскивать наиболее активные катализаторы. Температура оказывает положительное с точки зрения технологии и экономики влияние на скорость реакции и отрицательное на выход аммиака. Поэтому требуется выбирать оптимальную температуру, обеспечивающую в конечном счете минимальные затраты на производство продукта.

Состояние, при котором скорости прямой и обратной реакций равны между собой, называется химическим равновесием. Уравнение обратимой реакции в общем виде:

Скорость прямой реакции v 1 =k 1 [A] m [B] n , скорость обратной реакции v 2 =k 2 [С] p [D] q , где в квадратных скобках – равновесные концентрации. По определению, при химическом равновесии v 1 =v 2, откуда

К с =k 1 /k 2 = [С] p [D] q / [A] m [B] n ,

где К с – константа химического равновесия, выраженная через молярные концентрации. Приведенное математическое выражение нередко называют законом действия масс для обратимой химической реакции: отношение произведения равновесных концентраций продуктов реакции к произведению равновесных концентраций исходных веществ.

Положение химического равновесия зависит от следующих параметров реакции: температуры, давления и концентрации. Влияние, которое оказывают эти факторы на химическую реакцию, подчиняются закономерности, которая была высказана в общем виде в 1884 году французским ученым Ле-Шателье. Современная формулировка принципа Ле-Шателье такова:

Если на систему, находящуюся в состоянии равновесия, оказать внешнее воздействие, то система перейдет в другое состояние так, чтобы уменьшить эффект внешнего воздействия.

Факторы, влияющие на химическое равновесие.

1. Влияние температуры. В каждой обратимой реакции одно из направлений отвечает экзотермическому процессу, а другое - эндотермическому.

При повышении температуры химическое равновесие смещается в направлении эндотермической реакции, при понижении температуры - в направлении экзотермической реакции.

2. Влияние давления. Во всех реакциях с участием газообразных веществ, сопровождающихся изменением объема за счет изменения количества вещества при переходе от исходных веществ к продуктам, на положение равновесия влияет давление в системе.
Влияние давления на положение равновесия подчиняется следующим правилам:

При повышении давления равновесие сдвигается в направлении образования веществ (исходных или продуктов) с меньшим объемом.

3. Влияние концентрации. Влияние концентрации на состояние равновесия подчиняется следующим правилам:

При повышении концентрации одного из исходных веществ равновесие сдвигается в направлении образования продуктов реакции;
при повышении концентрации одного из продуктов реакции равновесие сдвигается в направлении образования исходных веществ.

Вопросы для самоконтроля:



1. Что такое скорость химической реакции и от каких факторов она зависит? От каких факторов зависит константа скорости?

2. Составить уравнение скорости реакции образования воды из водорода и кислорода и показать, как измениться скорость, если концентрацию водорода увеличить в три раза.

3. Как изменяется скорость реакции с течением времени? Какие реакции называются обратимыми? Чем характеризуется состояние химического равновесия? Что называется константой равновесия, от каких факторов она зависит?

4. Какими внешними воздействиями можно нарушить химическое равновесие? В каком направлении смешается равновесие при изменении температуры? Давления?

5. Каким образом можно сместить обратимую реакцию в определенном направлении и довести до конца?

Лекция № 12 (проблемная)

Растворы

Цель: Дать качественные заключения о растворимости веществ и количественную оценку растворимости.

Ключевые слова: Растворы – гомогенные и гетерогенные;истинные и коллоидные; растворимость веществ; концентрация растворов; растворы неэлектроилов; законы Рауля и вант-Гоффа.

План.

1. Классификация растворов.

2. Концентрация растворов.

3. Растворы неэлектролитов. Законы Рауля.



Классификация растворов

Растворы – это гомогенные (однофазные) системы переменного состава, состоящие из двух или более веществ (компонентов).

По характеру агрегатного состояния растворы могут быть газообразными, жидкими и твердыми. Обычно компонент, который в данных условиях находится в том же агрегатном состоянии, что и образующийся раствор, считают растворителем, остальные составляющие раствора – растворенными веществами. В случае одинакового агрегатного состояния компонентов растворителем считают тот компонент, который преобладает в растворе.

В зависимости от размеров частиц растворы делятся на истинные и коллоидные. В истинных растворах (часто называемых просто растворами) растворенное вещество диспергировано до атомного или молекулярного уровня, частицы растворенного вещества не видимы ни визуально, ни под микроскопом, свободно передвигаются в среде растворителя. Истинные растворы – термодинамически устойчивые системы, неограниченно стабильные во времени.

Движущими силами образования растворов являются энтропийный и энтальпийный факторы. При растворении газов в жидкости энтропия всегда уменьшается ΔS < 0, а при растворении кристаллов возрастает (ΔS > 0). Чем сильнее взаимодействие растворенного вещества и растворителя, тем больше роль энтальпийного фактора в образовании растворов. Знак изменения энтальпии растворения определяется знаком суммы всех тепловых эффектов процессов, сопровождающих растворение, из которых основной вклад вносят разрушение кристаллической решетки на свободные ионы (ΔH > 0) и взаимодействие образовавшихся ионов с молекулами растворителя (сольтивация, ΔH < 0). При этом независимо от знака энтальпии при растворении (абсолютно нерастворимых веществ нет) всегда ΔG = ΔH – T·ΔS < 0, т. к. переход вещества в раствор сопровождается значительным возрастанием энтропии вследствие стремления системы к разупорядочиванию. Для жидких растворов (расплавов) процесс растворения идет самопроизвольно (ΔG < 0) до установления динамического равновесия между раствором и твердой фазой.

Концентрация насыщенного раствора определяется растворимостью вещества при данной температуре. Растворы с меньшей концентрацией называются ненасыщенными.

Растворимость для различных веществ колеблется в значительных пределах и зависит от их природы, взаимодействия частиц растворенного вещества между собой и с молекулами растворителя, а также от внешних условий (давления, температуры и т. д.)

В химической практике наиболее важны растворы, приготовленные на основе жидкого растворителя. Именно жидкие смеси в химии называют просто растворами. Наиболее широко применяемым неорганическим растворителем является вода. Растворы с другими растворителями называются неводными.

Растворы имеют чрезвычайно большое практическое значение, в них протекают многие химические реакции, в том числе и лежащие в основе обмена веществ в живых организмах.

Концентрация растворов

Важной характеристикой растворов служит их концентрация, которая выражает относительное количество компонентов в растворе. Различают массовые и объемные концентрации, размерные и безразмерные.

К безразмерным концентрациям (долям) относятся следующие концентрации:

Массовая доля растворенного вещества W (B) выражается в долях единицы или в процентах:

где m(B) и m(A) – масса растворенного вещества B и масса растворителя A.

Объемная доля растворенного вещества σ(B) выражается в долях единицы или объемных процентах:

где V i – объем компонента раствора, V(B) – объем растворенного вещества B. Объемные проценты называют градусами *) .

*) Иногда объемная концентрация выражается в тысячных долях (промилле, ‰) или в миллионных долях (млн –1), ppm.

Мольная доля растворенного вещества χ(B) выражается соотношением

Сумма мольных долей k компонентов раствора χ i равна единице

К размерным концентрациям относятся следующие концентрации:

Моляльность растворенного вещества C m (B) определяется количеством вещества n(B) в 1 кг (1000 г) растворителя, размерность моль/кг.

Молярная концентрация вещества B в растворе C (B) – содержание количества растворенного вещества B в единице объема раствора, моль/м 3 , или чаще моль/литр:

где μ(B) – молярная масса B, V – объем раствора.

Молярная концентрация эквивалентов вещества B C Э (B) (нормальность – устаревш.) определяется числом эквивалентов растворенного вещества в единице объема раствора, моль/литр:

где n Э (B) – количество вещества эквивалентов, μ Э – молярная масса эквивалента.

Титр раствора вещества B(T B) определяется массой растворенного вещества в г, содержащегося в 1 мл раствора:

Г/мл или г/мл.

Массовые концентрации (массовая доля, процентная, моляльная) не зависят от температуры; объемные концентрации относятся к определенной температуре.

Все вещества в той или иной степени способны растворяться и характеризуются растворимостью. Некоторые вещества неограниченно растворимы друг в друге (вода-ацетон, бензол-толуол, жидкие натрий-калий). Большинство соединений ограниченно растворимы (вода-бензол, вода-бутиловый спирт, вода-поваренная соль), а многие малорастворимы или практически нерастворимы (вода-BaSO 4 , вода-бензин).

Растворимостью вещества при данных условиях называют его концентрацию в насыщенном растворе. В таком растворе достигается равновесие между растворяемым веществом и раствором. В отсутствие равновесия раствор остается стабильным, если концентрация растворенного вещества меньше его растворимости (ненасыщенный раствор), или нестабильным, если в растворе содержится вещества больше его растворимости (пересыщенный раствор).

1. Среди всех известных реакций различают реакции обратимые и необратимые. При изучении реакций ионного обмена были перечислены условия, при которых они протекают до конца. ().

Известны и такие реакции, которые при данных условиях до конца не идут. Так, например, при растворении в воде сернистого газа происходит реакция: SO 2 +H 2 O → H 2 SO 3 . Но оказывается, что в водном растворе может образоваться только определенное количество сернистой кислоты. Это объясняется тем, что сернистая кислота непрочная, и происходит обратная реакция, т.е. разложение на оксид серы и воду. Следовательно, данная реакция не идет до конца потому, что одновременно происходит две реакции – прямая (между оксидом серы и водой) и обратная (разложение сернистой кислоты). SO 2 +H 2 O ↔ H 2 SO 3 .

Химические реакции, протекающие при данных условиях во взаимно противоположных направлениях, называются обратимыми.


2. Поскольку скорость химических реакций зависит от концентрации реагирующих веществ, то вначале скорость прямой реакции(υ пр ) должна быть максимальной,а скорость обратной реакции (υ обр ) равняется нулю. Концентрация реагирующих веществ с течением времени уменьшается, а концентрация продуктов реакции увеличивается. Поэтому скорость прямой реакции уменьшается, а скорость обратной реакции увеличивается. В определенный момент времени скорость прямой и обратной реакций становятся равными:

Во всех обратимых реакциях скорость прямой реакции уменьшается, скорость обратной реакции возрастает до тех пор, пока обе скорости не станут равными и не установится состояние равновесия:

υ пр = υ обр

Состояние системы, при котором скорость прямой реакции равна скорости обратной реакции, называют химическим равновесием.

В состоянии химического равновесия количественное соотношение между реагирующими веществами и продуктами реакции остается постоянным: сколько молекул продукта реакции в единицу времени образуется, столько их и разлагается. Однако состояние химического равновесия сохраняется до тех пор, пока остаются неизменными условия реакции: концентрация, температура и давление.

Количественно состояние химического равновесия описывается законом действующих масс.

При равновесии отношение произведения концентраций продуктов реакции (в степенях их коэффициентов) к произведению концентраций реагентов (тоже в степенях их коэффициентов) есть величина постоянная, не зависящая от исходных концентраций веществ в реакционной смеси.

Эта постоянная величина называется константой равновесия - k

Так для реакции: N 2 (Г) + 3 H 2 (Г) ↔ 2 NH 3 (Г) + 92,4 кДжконстанта равновесия выражается так:

υ 1 = υ 2

υ 1 (прямой реакции) = k 1 [ N 2 ][ H 2 ] 3 , где – равновесные молярные концентрации, = моль/л

υ 2 (обратной реакции) = k 2 [ NH 3 ] 2

k 1 [ N 2 ][ H 2 ] 3 = k 2 [ NH 3 ] 2

K p = k 1 / k 2 = [ NH 3 ] 2 / [ N 2 ][ H 2 ] 3 – константа равновесия .

Химическое равновесие зависит – от концентрации, давления, температуры.

Принцип определяет направление смешения равновесия:

Если на систему, находящуюся в равновесии оказали внешнее воздействие, то равновесие в системе сместится в сторону обратную этому воздействию.

1) Влияние концентрации – если увеличить концентрацию исходных веществ, то равновесие смещается в сторону образования продуктов реакции.

Например, K p = k 1 / k 2 = [ NH 3 ] 2 / [ N 2 ][ H 2 ] 3

При добавлении в реакционную смесь, например азота , т.е. возрастает концентрация реагента, знаменатель в выражении для К увеличивается, но так как К – константа, то для выполнения этого условия должен увеличиться и числитель. Таким образом, в реакционной смеси возрастает количество продукта реакции. В таком случае говорят о смещении химического равновесия вправо, в сторону продукта.

Таким образом, увеличение концентрации реагентов (жидких или газообразных) смещает в сторону продуктов, т.е. в сторону прямой реакции. Увеличение концентрации продуктов (жидких или газообразных) смещает равновесие в сторону реагентов, т.е. в сторону обратной реакции.

Изменение массы твердого вещества не изменяет положение равновесия.

2) Влияние температуры – увеличение температуры смещает равновесие в сторону эндотермической реакции.

а) N 2 (Г) + 3 H 2 (Г) ↔ 2 NH 3 (Г) + 92,4 кДж (экзотермическая – выделение тепла)

При повышении температуры равновесие сместится в сторону реакции разложения аммиака (←)

б) N 2 (Г) + O 2 (Г) ↔ 2 NO (Г) – 180,8 кДж(эндотермическая -поглощение тепла)

При повышении температуры равновесие сместится в сторону реакции образования NO (→)

3) Влияние давления (только для газообразных веществ) – при увеличении давления, равновесие смещается в сторону образовани я веществ, занимающих меньший о б ъ ём.

N 2 (Г) + 3 H 2 (Г) ↔ 2 NH 3 (Г)

1 V - N 2

3 V - H 2

2 V NH 3

При повышении давления ( P ): до реакции 4 V газообразных веществ после реакции 2 V газообразных веществ, следовательно, равновесие смещается вправо ( )

При увеличении давления, например, в 2 раза, объём газов уменьшается в такое же количество раз, а следовательно, концентрации всех газообразных веществ возрастут в 2 раза. K p = k 1 / k 2 = [ NH 3 ] 2 / [ N 2 ][ H 2 ] 3

В этом случае числитель выражения для К увеличится в 4 раза, а знаменатель в 16 раз, т.е. равенство нарушится. Для его восстановления должны возрасти концентрация аммиака и уменьшиться концентрации азота и водо рода. Равновесие сместится вправо.

Итак, при повышении давления равновесие смещается в сторону уменьшения объема, при понижении давления – в сторону увеличения объёма.

Изменение давления практически не сказывается на объёме твердых и жидких веществ, т.е. не изменяет их концентрацию. Следовательно, равновесие реакций, в которых газы не участвуют, практически не зависит от давления.

! На течение химической реакции влияют вещества – катализаторы. Но при использовании катализатора понижается энергия активации как прямой, так и обратной реакции на одну и ту же величину и поэтому равновесие не смещается.

Решите задачи:

№1. Исходные концентрации СO и O 2 в обратимой реакции

2CO (г) + O 2 (г)↔ 2 CO 2 (г)

Равны соответственно 6 и 4 моль/л. Вычислите константу равновесия, если концентрация CO 2 в момент равновесия равна 2 моль/л.

№2. Реакция протекает по уравнению

2SO 2 (г) + O 2 (г) = 2SO 3 (г) + Q

Укажите, куда сместится равновесие, если

а) увеличить давление

б) повысить температуру

в) увеличить концентрацию кислорода

г) введение катализатора?

Если система находится в состоянии равновесия, то она будет пребывать в нем до тех пор, пока внешние условия сохраняются постоянными. Если же условия изменятся, то система выйдет из равновесия - скорости прямого и обратного процессов изменятся неодинаково - будет протекать реакция. Наибольшее значение имеют случаи нарушения равновесия вследствие изменения концентрации какого-либо из веществ, участвующих в равновесии, давления или температуры.

Рассмотрим каждый из этих случаев.

Нарушение равновесия вследствие изменения концентрации какого-либо из веществ, участвующих в реакции. Пусть водород, иодоводород и пары иода находятся в равновесии друг с другом при определенных температуре и давлении. Введем в систему дополнительно некоторое количество водорода. Согласно закону действия масс, увеличение концентрации водорода повлечет за собой увеличение скорости прямой реакции - реакции синтеза HI, тогда как скорость обратной реакции не изменится. В прямом направлении реакция будет теперь протекать быстрее, чем в обратном. В результате этого концентрации водорода и паров иода будут уменьшаться, что повлечет за собою замедление прямой реакции, а концентрация HI будет возрастать, что вызовет ускорение обратной реакции. Через некоторое время скорости прямой и обратной реакций вновь сравняются- установится новое равновесие. Но при этом концентрация HI будет теперь выше, чем она была до добавления , а концентрация - ниже.

Процесс изменения концентраций, вызванный нарушением равновесия, называется смещением или сдвигом равновесия. Если при этом происходит увеличение концентраций веществ, стоящих в правой части уравнения (и, конечно, одновременно уменьшение концентраций веществ, стоящих слева), то говорят, что равновесие смещается вправо, т. е. в направлении течения прямой реакции; при обратном изменении концентраций говорят о смещении равновесия влево - в направлении обратной реакции. В рассмотренном примере равновесие сместилось вправо. При этом то вещество , увеличение концентрации которого вызвало нарушение равновесия, вступило в реакцию - его концентрация понизилась.

Таким образом, при увеличении концентрации какого-либо из веществ, участвующих в равновесии, равновесие смещается в сторону расхода этого вещества; при уменьшении концентрации какого-либо из веществ равновесие смещается в сторону образования этого вещества.

Нарушение равновесия вследствие изменения давления (путем уменьшения или увеличения объема системы). Когда в реакции участвуют газы, равновесие может нарушиться при изменении объема системы.

Рассмотрим влияние давления на реакцию между монооксидом азота и кислородом:

Пусть смесь газов , и находится в химическом равновесии при определенной температуре и давлении. Не изменяя температуры, увеличим давление так, чтобы объем системы уменьшился в 2 раза. В первый момент парциальные давления и концентрации всех газов возрастут вдвое, но при этом изменится соотношение между скоростями прямой и обратной реакций - равновесие нарушится.

В самом деле, до увеличения давления концентрации газов имели равновесные значения , и , а скорости прямой и обратной реакций были одинаковы и определялись уравнениями:

В первый момент после сжатия концентрации газов увеличатся вдвое по сравнению с их исходными значениями и будут равны соответственно , и . При этом скорости прямой и обратной реакций будут определяться уравнениями:

Таким образом, в результате увеличения давления скорость прямой реакции возросла в 8 раз, а обратной - только в 4 раза. Равновесие в системе нарушится - прямая реакция будет преобладать над обратной. После того как скорости сравняются, вновь установится равновесие, но количество в системе возрастет, равновесие сместится вправо.

Нетрудно видеть, что неодинаковое изменение скоростей прямой и обратной реакций связано с тем, что в левой и в правой частях уравнения рассматриваемой реакции различно число молекул газов: одна молекула кислорода и две молекулы монооксида азота (всего три молекулы газов) превращаются в две молекулы газа - диоксида азота. Давление газа есть результат ударов его молекул о стенки сосуда; при прочих равных условиях давление газа тем выше, чем больше молекул заключено в данном объеме газа. Поэтому реакция, протекающая с увеличением числа молекул газов, приводит к возрастанию давления, а реакция, протекающая с уменьшением числа молекул газов, - к его понижению.

Помня об этом, вывод о влиянии давления на химическое равновесие можно сформулировать так:

При увеличении давления путем сжатия системы равновесие сдвигается в сторону уменьшения числа молекул газов, т. е. в сторону понижения давления, при уменьшении давления равновесие сдвигается в сторону возрастания числа молекул газов, т. е. в сторону увеличения давления.

В том случае, когда реакция протекает без изменения числа молекул газов, равновесие не нарушается при сжатии или при расширении системы. Например, в системе

равновесие не нарушается при изменении объема; выход HI не зависит от давления.

Нарушение равновесия вследствие изменения температуры. Равновесие подавляющего большинства химических реакций сдвигается при изменении температуры. Фактором, который определяет направление смещения равновесия, является при этом знак теплового эффекта реакции. Можно показать, что при повышении температуры равновесие смещается в направлении эндотермической, а при понижении - в направлении экзотермической реакции.

Так, синтез аммиака представляет собой экзотермическую реакцию

Поэтому при повышении температуры равновесие в системе сдвигается влево - в сторону разложения аммиака, так как этот процесс идет с поглощением теплоты.

Наоборот, синтез оксида азота (II) представляет собой эндотермическую реакцию:

Поэтому при повышении температуры равновесие в системе сдвигается вправо - в сторону образования .

Закономерности, которые проявляются в рассмотренных примерах нарушения химического равновесия, представляют собою частные случаи общего принципа, определяющего влияние различных факторов на равновесные системы. Этот принцип, известный под названием принципа Ле Шателье, в применении к химическим равновесиям можно сформулировать так:

Если на систему, находящуюся в равновесии, оказать какое-либо воздействие, то в результате протекающих в ней процессов равновесие сместится в таком направлении, что оказанное воздействие уменьшится.

Действительно, при введении в систему одного из веществ, участвующих в реакции, равновесие смещается в сторону расхода этого вещества. "При повышении давления оно смещается так, что давление в системе снижается; при повышении температуры равновесие смещается в сторону эндотермической реакции - температура в системе падает.

Принцип Ле Шателье распространяется не только на химические, но и на различные физико-химические равновесия. Смещение равновесия при изменении условий таких процессов, как кипение, кристаллизация, растьорение, происходит в соответствии с принципом Ле Шателье.


Состояние, в котором скорость обратной реакции становится равной скорости прямой реакции, называется химическим равновесием .

Количественно такое состояние характеризуется константой равновесия . Для обратимой реакции можно записать так:

Где в соответствие с законом действующих масс скорость прямой реакции v 1 и обратной v 2 будут выглядеть следующим образом:

v 1 = k 1 [A] m [B] n ,

v 2 = k 2 [C] p [D] q .

В момент достижения химического равновесия скорости прямой и обратной реакции становятся одинаковыми:

k 1 [A] m [B] n = k 2 [C] p [D] q ,

K = k 1 /k 2 =([C] p [D] q)/([A] m [B] n),

где К - константа равновесия, показывающая отношение прямой и обратной реакций.

Те концентрации, которые останавливаются при равновесии, называются равновесными концентрациями. Следует помнить, что значения степеней m , n , p , q равны стехиометрическим коэффициентам в равновесной реакции. Численное значение константы равновесия определяют выход реакции. При К>>1 выход продуктов велик, а при К<<1 - очень мал.

Выход реакции - отношение количества получаемого в действительности продукта к тому количеству, которое получилось бы при протекании этой реакции до конца (выражается в процентах).

Химическое равновесие не может сохраняться бесконечно долго. В действительности, изменение температуры, давления или концентрации реагентов, могут сместить равновесие в ту или иную сторону.

Изменения, происходящие в системе в результате внешних воздействий, определяются принципом подвижного равновесия - принципом Ле Шателье :

Внешнее воздействие на систему, находящуюся в состоянии равновесия, приводит к смещению этого равновесия в направлении, при котором эффект произведенного воздействия ослабляется.

Т.е. изменяется соотношение между скоростям прямой и обратной реакции.

Принцип применим не только к химическим, но и к физическим процессам, такими как плавление, кипение и др.

Изменение концентрации.

При увеличении концентрации одного из реагирующих веществ равновесие смещается в сторону расхода этого вещества.

При увеличении концентрации железа или серы, равновесие будет сдвигаться в сторону расхода этого вещества, т.е. вправо.

Влияние давления на химическое равновесие.

Учитывается только в газовых фазах!

При увеличении давления равновесие смещается в сторону уменьшения количеств газообразных веществ . Если реакция протекает без изменения количеств газообразных веществ, то давление на равновесие никак не влияет.

N 2 (г) + 3 H 2 (г) 2 NH 3 (г),

Слева 4 моль газообразных реагентов, справа - 2, поэтому при увеличении давления равновесие будет смещаться вправо.

N 2 (г)+ O 2 (г) = 2 NO ),

Слева 2 моль газообразных веществ и справа, поэтому давление не влияет на равновесие.

Влияние температуры на химическое равновесие.

При изменении температуры изменяется как и прямая, так и обратна реакция, но в различной степени.

При повышении температуры равновесие смещается в сторону эндотермической реакции.

N 2 (г) + 3 H 2 (г) 2 NH 3 (г) + Q ,

Эта реакция протекает с выделение тепла (экзотермическая), поэтому повышение температуры будет смещать равновесие в сторону исходных продуктов (обратная реакция).