Доза инфицирующая. Взаимодействие микро- и макроорганизма может строиться различным образом Возникновение инфекций резервуар инфицирующая доза

Развитие инфекционного процесса зависит от основных свойств микроорганизма. К этим свойствам относятся патогенность и вирулентность.

Патогенность ― это потенциальная способность микробов вызывать инфекционный процесс. Патогенные микробы оказывают поражающее и токсическое действие на ткани больного организма. Патогенность является генетическим признаком определенного вида микроба и определяется его генотипом. Патогенность характеризуется специфичностью действия микроба.

Вирулентность ― мера, степень патогенности, связанная с индивидуальным свойством штамма, которая меняется в различных условиях среды. Высокая вирулентность обычно характерна для свежевыделенных штаммов микробл, а при сохранении их в лабораторных условиях она постепенно снижается, но не исчезает. В эксперименте вирулентность микроба можно усилить последовательными пассажами через организм восприимчивых животных. Например, вирулентность стрептококка возрастает при многократных пассажах через организм белых мышей. В классическом опыте Пастер резко усилил вирулентность вируса бешенства для кроликов путем последовательного пассирования через мозг кроликов.

Создавая неблагоприятные условия для жизнедеятельности патогенного микроба путем воздействия физических, химических и биологических факторов, можно ослабить его вирулентность. К этим факторам относятся: повышенная температура (Пастер стойко ослабил вирулентность возбудителя сибирской язвы при температуре 43°), антимикробные препараты, иммунные сыворотки, пересевы на различные питательные среды.

Объективным показателем вирулентности патогенных микробов в естественных условиях является тяжесть и исход вызываемого ими заболевания, а в лаборатории ― количество (доза), вызывающее гибель или инфицирование подопытных животных. Установлено наиболее верным определение 50% летальной (LD50) или инфицирующей (ID50) дозы. Патогенность рассматривается в органической связи с вирулентностью и характеризуется тремя неотъемлемыми свойствами микроорганизмов: инфективностыо, инвазн-онностью и токсигенностью (В. Д. Тимаков, В. Г. Петровская).

Инфективность (заразительность) ― способность патогенного микроба вызывать инфекционный процесс в естественных условиях. Для инфективности характерны способность микроба выживать во внешней среде и проникать через естественные барьеры, т. е. переходить от больного организма к здоровому.

Инвазионность―способность патогенного микроба преодолевать защитные механизмы организма с целью поражения естественно избранного им органа, где он находит благоприятные условия для активного размножения и количественного накопления. Микробы, обладающие инвазионными свойствами, вызывают на месте их внедрения в организм изменение ткани. Вещества, изменяющие проницаемость местной ткани, называются инвазинами, или факторами распространения. Было установлено, что такое вещество (гиалуронидаза) обнаруживается в фильтратах бульонных культур различных видов микроорганизмов. Инвазионность осуществляется целым арсеналом средств. К ним относятся: гиалуронидаза, капсулообразование, капсульные антигены, агрессины, антифагины.

Гиалуронидаза относится к ферментам патогенности и оказывает разрушающее действие на гиалуроновую кислоту (по-лисахаридное образование соединительной ткани), которая создает препятствие проникновению и распространению микробов в организме. Выявление этого фермента основано на его способности гидролизовать гиалуроновую кислоту, которая теряет способность образовать с уксусной кислотой сгусток муцина.

К а п су л о о б р а з о в а н и е ―вирулентность некоторых видов микробов (пневмококки, сибиреязвенные бактерии и др.) связана с их способностью образовывать капсулы в организме человека и животных. Капсула сибиреязвенной бактерии обладает выраженной антифагоцитарной активностью, т. е. защищает бактерии от действия фагоцитоза. Это было доказано опытом. Если морской свинке ввести смесь капсульной и бескапсульной культур сибиреязвенных бацилл, то фагоцитозу подвергаются только бескапсуль-ные, а капсульные развиваются и размножаются в организме.

Капсульные антигены. Патогенные бактерии содержат поверхностные антигенные компоненты, подавляющие защитные функции макроорганизма. Такими свойствами обладают полисаха-ридные антигены пневмококков, vi-антиген энтеробактерий, М-протеин гемолитических стрептококков и др. Антиген типа vi обнаружен у возбудителя туляремии.

Агрессины ― вещества, подавляющие защитные функции организма, были обнаружены у возбудителей чумы, дифтерии, сибирской язвы, брюшного тифа, паратифов, туберкулеза, а также у пневмококков, стафилококков и стрептококков. Агрессины были получены Байлем при фильтрации экссудата из плевральной полости подопытных животных, зараженных возбудителем сибирской язвы и пневмококками. Сам фильтрат не опасен, но если добавить его к несмертелыюй дозе соответствующего микроба, то это вызывает смертельное заболевание с последующей гибелью лабораторных животных.

Антифагины ― вещества, выделенные из взвеси различных видов микроорганизмов, обладающие способностью подавлять фагоцитоз. Они разрушаются при кипячении в течение 20 минут.

К веществам, определяющим вирулентность микроорганизмов, относятся и химические компоненты. Их молено использовать для дифференциации патогенных микробов от непатогенных. Например, штамм микобактерий туберкулеза (Н = 37 RV), обладающий высокой вирулентностью, содержит 7,6% липополисахаридов и фракцию, состоящую из миколовой кислоты (65―80%), авирулентный штамм (Н = 37 Ra) содержит только 0,5% липополисахаридов и не имеет миколовой кислоты. Выявлена существенная разница в количестве рибонуклеиновой и дезоксирибопуклеиновой кислот у холерного и холероподобиого вибрионов (соответственно 1: 9 и 1:1). Такие данные были обнаружены у некоторых патогенных и пепатогенных микроорганизмов.

Токсигенность ― это способность микроорганизма нарушать метаболические функции макроорганизма. Токсипообразование для некоторых видов микробов является жизненно необходимым процессом. Ядовитые вещества, вызывающие патологические изменения в клетках, тканях и органах макроорганизма, называются токе и нам и.

По характеру образования микробные токсины подразделяются на экзотоксины и эндотоксины.

Экзотоксины выделяются возбудителями газовой анаэробной инфекции, ботулизма, столбняка, дифтерии, дизентерийными бактериями Григорьева―Шига, а также отдельными видами стафилококков и гемолитических стрептококков. Они являются сильными биологическими ядами и в минимальных дозах действуют на чувствительных животных.

Дифтерийный токсин вызывает некроз тканей в зоне внедрения возбудителя и распространяется по всему организму, в котором поражает мышечные, нервные, печеночные, почечные, кожные и другие ткани. Столбнячный токсин действует на двигательные клетки передних рогов спинного мозга и вызывает судорожные мышечные сокращения у восприимчивого организма. Экзотоксины у возбудителей дифтерии, столбняка и газовой анаэробной инфекции разрушаются под воздействием пищеварительных ферментов, а у патогенных стафилококков п палочек ботулизма не разрушаются в желудке и кишечнике. Они вызывают отравление при пероральном введении в организм.

Сила действия микробных токсинов определяется путем их введения в организм восприимчивых животных по принятой методике (Dim, Dl50). За единицу измерения силы дифтерийного токсина принимается 1 Dim, т. е. минимальное количество токсина, которое при подкожном введении морским свинкам весом в 250 г приводит их к гибели на четвертые сутки. Минимальная смертельная доза нативного дифтерийного токсина для морской свинки ― 0,002 мл, столбнячного токсина для белой мыши ― 0,000005 мл, ботулиниче-ского токсина для морской свинки ― 0,00001―0,000001 мл.

Экзотоксины, полученные в очищенном виде, обладают высокой токсичностью для восприимчивых животных. 1 мг азота кристаллического столбнячного токсина содержит 50―75x10", ботули-нического ― 220ХЮ6 Dim для белых мышей и дифтерийного ― 50000―60000 Dim для морских свинок.

Получение экзотоксинов. Токсин получают из питательных сред, в которых культивируются продуценты экзотоксинов, путем их фильтрования. Фильтрат, содержащий экзотоксин, не может считаться чистым токсином, ибо в нем содержатся вещества, входящие в состав питательной среды, и различные продукты обмена. Поэтому проводят очистку и концентрацию токсинов путем применения методов коагуляции в изоэлектрической точке, высаливания сульфатом аммония, многократного переосаждения трихлоруксус-ной кислотой при низкой температуре и рН около 4,0, а также адсорбции различными веществами.

Эндотоксины образуются многими видами микроорганизмов. Например, возбудители брюшного тифа, паратифов А и В, дизентерии, Менингита, гонореи и другие патогенные грамотрицательные бактерии содержат эндотоксины. Они находятся внутри клетки и прочно связаны с телами бактерии. Эндотоксины вызывают в организме комплекс патологических изменений, главным образом действуют на эндотелий капилляров, лейкоциты, лимфо-идную ткань и вегетативную нервную систему. Они освобождаются из клеток при разрушении их ультразвуком, повторным замораживанием и оттаиванием, при экстрагировании слабыми кислотами и щелочами. Например, эндотоксин у дизентерийной бактерии Григорьева―Шига получают путем разрушения клеток и осаждения белков трихлоруксусной или соляной кислотой с последующим центрифугированием.

По химическому составу и некоторым другим признакам токсины делятся на следующие.

Токсины белковой природы ― это экзотоксины, выделяющиеся в питательную среду. Химический состав экзотоксина сложный. Например, дифтерийный экзотоксин имеет общий азот ― 16%, аминный азот ―0,98%, серу ―0,75%, фосфор ― 0,05%. Экзотоксины разрушаются при температуре 60―80° в течение 20―50 минут, при кипячении ― моментально. У экзотоксинов обнаружено явление потенсирования, т. е. смесь токсинов действует на организм более ядовито, чем монотоксин. Резко выражено по-тенсирующее действие токсинов у возбудителей столбняка, газовой анаэробной инфекции и стафилококков, а также возбудителя дифтерии.

Токсины, относящиеся к глюцидо-липидно-про-теиновым комплекса м,― это эндотоксины, связанные с телами грамотрицательных бактерий (кишечно-тифознс-дизентерийная группа, бруцеллы, менингококки). Их не бывает у грамположн-тельных бактерий. Химический состав токсинов: полисахариды (50―65%), жирные кислоты (20―25%), уксусная и фосфорная кислоты, а также протеины и азотистые соединения.

Полисахаридные токсины. Это токсические вещества, выделяемые из бактерий, представляющие собой специфические полисахариды, отличающиеся от обычных полисахаридов содержанием в своем составе глюкозы, галактозы, арабинозы, маннозы, рамнозы, аминосахаридов, липидов и других веществ. Полисахаридные токсины обладают гемолитическими, лейкотоксическими и нейротропными свойствами.

Ферменты патогенности. Токсины играют ведущую роль в патогенезе инфекционных болезней, но не единственную. Их токсическое действие осуществляется в комплексе с ферментами, названными в литературе «ферментами патогенности», и продуктами распада клеток и тканей. Они вызывают не только очаговые поражения, но и через нейро-гуморальную систему нарушения функции различных органов. В результате этого угнетаются защитные механизмы организма, происходит количественное накопление и активное действие возбудителей инфекционных заболеваний.

Обитая в инфицированном организме человека, патогенные бактерии совершают сложные биохимические процессы, катализируемые ферментными системами. Вырабатываемые ими продукты обмена, включая и продукты аутолиза бактерий, нарушают взаимные связи и согласованность действий различных органов и систем в динамике болезни. По характеру влияния на патогенез болезни ферменты патогенности подразделяются на 4 группы: первая ―обладает высокой токсичностью; вторая, не обладая токсичностью,― переводит протоксин в токсин с многократным усилением его ядовитости; третья ― способствует распространению бактерий и их токсинов В тканях; четвертая ― вызывает образование в организме неспецифических ядовитых продуктов клеточного распада.

Ферменты (гиалуронидаза, коагулаза, стрептокиназа и др.) подавляют защитные механизмы организма и усиливают вирулентность у патогенных бактерий. Лейкоцидин стафилококков вызывает гибель нейтрофилов крови; декарбоксилазы аминокислот, синтезируемые бактериями кишечной группы, защищают их от действия кислой среды. По химической структуре ферменты патогенности близки к токсинам. Они взаимодействуют между собой и являются оружием патогенных микробов.


Похожая информация.


)

наименьшее количество патогенных микроорганизмов данного штамма и определенной вирулентности, способное вызвать развитие инфекционного процесса у человека или животного, чувствительного к данному возбудителю.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Доза инфицирующая" в других словарях:

    - (ID) наименьшее количество патогенных микроорганизмов данного штамма и определенной вирулентности, способное вызвать развитие инфекционного процесса у человека или животного, чувствительного к данному возбудителю … Большой медицинский словарь

    - (ID50) количественный показатель вирулентности возбудителя инфекционной болезни, выражаемый значением инфицирующей дозы, которая при данном пути заражения вызывает развитие болезни у 50% экспериментальных животных … Большой медицинский словарь

    Такое количество (разведение, плотность) иссл. к ры микроорганизмов, к рое вызывает клинически проявляющуюся локальную или генерализованную инфекцию у 50% особей тест системы (животные, эмбрионы, пробирки с к рами клеток). Для определения ИД 50 в … Словарь микробиологии

    I см. Доза инфицирующая. II см. Доза инфицирующая средняя … Медицинская энциклопедия

    См. Доза инфицирующая … Большой медицинский словарь

    См. Доза инфицирующая средняя … Большой медицинский словарь

    I Инфекция (позднелат. intectio заражение) сложный патофизиологический процесс взаимодействия макро и микроорганизма, имеющий широкий диапазон проявлений от бессимптомного носительства до тяжелых форм инфекционной болезни. Термин «инфекция»… … Медицинская энциклопедия

    Инфекционные болезни, характеризующиеся преимущественным поражением печени, протекающие с интоксикацией и в ряде случаев с желтухой. В соответствии с рекомендацией Комитета экспертов ВОЗ по гепатиту (1976) Г. в. рассматриваются как несколько… … Медицинская энциклопедия

Инфекция – это совокупность биологических реакций, которыми макроорганизм отвечает на внедрение возбудителя.

Диапазон проявлений инфекций может быть различным. Крайними формами проявления инфекций являются:

1) бактерионосительство, персистенция, живая вакцинация;

2) инфекционная болезнь; имеются клинические проявления инфекции, эти реакции могут привести к летальному исходу.

Инфекционный процесс – ответная реакция коллектива популяции на внедрение и циркуляцию в ней микробных агентов.

Инфекционные болезни имеют ряд характерных особенностей, отличающих их от других болезней:

1) инфекционные болезни имеют своего возбудителя – микроорганизм;

2) инфекционные болезни контагиозны, т. е. способны передаваться от больного к здоровому;

3) инфекционные болезни оставляют после себя более или менее выраженную невосприимчивость или повышенную чувствительность к данному заболеванию;

4) для инфекционных болезней характерен ряд общих признаков: лихорадка, симптомы общей интоксикации, вялость, адинамия;

5) инфекционные болезни имеют четко выраженную стадийность, этапность.

Для возникновения инфекционного заболевания необходимо сочетание следующих факторов:

1) наличия микробного агента;

2) восприимчивости макроорганизма;

3) наличия среды, в которой происходит это взаимодействие.

Микробный агент – это патогенные и условно-патогенные микроорганизмы.

Существенное значение для возникновения инфекционного заболевания имеет инфицирующая доза возбудителя – минимальное количество микробных клеток, способных вызвать инфекционный процесс. Инфицирующие дозы зависят от видовой принадлежности возбудителя, его вирулентности и состояния неспецифической и иммунной защиты.

Ткани, лишенные физиологической защиты против конкретного вида микроорганизма, служат местом его проникновения в макроорганизм, или входными воротами инфекции. Входные ворота определяют локализацию возбудителя в организме, патогенетические и клинические особенности заболевания.

Внешняя среда может оказывать влияние как на макроорганизм, так и на микробов-возбудителей. Это природно-климатические, социально-экономические, культурно-бытовые условия.

Для ряда инфекций характерны эпидемии и пандемии.

Эпидемия – это широкое распространение инфекции в популяции с охватом больших территорий, характеризующееся массовостью заболеваний.

Пандемия – распространение инфекции практически на всю территорию земного шара с очень высоким процентом случаев заболеваний.

Эндемичные заболевания (с природной очаговостью) – это заболевания, для которых отмечены территориальные ареалы с повышенной заболеваемостью данной инфекцией.

2. Формы инфекции и периоды инфекционных болезней

Классификация инфекций

1. По этиологии:

1) бактериальные;

2) вирусные;

3) протозойные;

4) микозы;

5) микст-инфекции.

2. По количеству возбудителей:

1) моноинфекции;

2) полиинфекции.

3. По тяжести течения:

1) легкие;

2) тяжелые;

3) средней тяжести.

4. По длительности:

1) острые;

2) подострые;

3) хронические;

4) латентные.

5. По путям передачи:

1) горизонтальные:

а) воздушно-капельный путь;

б) фекально-оральный;

в) контактный;

г) трансмиссивный;

д) половой;

2) вертикальные:

а) от матери к плоду (трансплацентарный);

б) от матери к новорожденному в родовом акте;

3) артифициальные (искусственные) – при инъекциях, обследованиях, операциях и т. д.

В зависимости от локализации возбудителя различают:

1) очаговую инфекцию, при которой микроорганизмы локализуются в местном очаге и не распространяются по всему организму;

2) генерализованную инфекцию, при которой возбудитель распространяется по организму лимфогенным и гематогенным путем. При этом развивается бактериемия или вирусемия. Наиболее тяжелая форма – сепсис.

Выделяют также:

1) экзогенные инфекции; возникают в результате заражения человека патогенными микроорганизмами, поступающими из окружающей среды с пищей, водой, воздухом, почвой, выделениями больного человека, реконвалесцента и микробоносителя;

2) эндогенные инфекции; вызываются представителями нормальной микрофлоры – условно-патогенными микроорганизмами самого индивидуума.

Разновидность эндогенных инфекций – аутоинфекции, они возникают в результате самозаражения путем переноса возбудителя из одного биотопа в другой.

Выделяют следующие периоды инфекционных болезней:

1) инкубационный; от момента проникновения возбудителя в организм до появления первых признаков заболевания. Продолжительность – от нескольких часов до нескольких недель. Больной не заразен;

2) продромальный; характеризуется появлением первых неясных общих симптомов. Возбудитель интенсивно размножается, колонизирует ткань, начинает продуцировать ферменты и токсины. Продолжительность – от нескольких часов до нескольких дней;

3) разгар болезни; характеризуется появлением специфических симптомов. Возбудитель продолжает интенсивно размножаться, накапливаться, выделяет в кровь токсины и ферменты. Происходит выделение возбудителя из организма, поэтому больной представляет опасность для окружающих. В начале данного периода в крови обнаруживаются специфические антитела;

4) исход. Могут быть разные варианты:

а) летальный исход;

б) выздоровление (клиническое и микробиологическое). Клиническое выздоровление: симптомы заболевания угасли, но возбудитель еще находится в организме. Этот вариант опасен формированием носительства и рецидивом заболевания. Микробиологическое – полное выздоровление; в) хроническое носительство.

Реинфекцией называют заболевание, возникающее после перенесенной инфекции в случае повторного заражения тем же возбудителем.

Суперинфекция возникает, когда на фоне течения одного инфекционного заболевания происходит заражение еще одним возбудителем.

3. Возбудители инфекций и их свойства

Среди бактерий по способности вызывать заболевание выделяют:

1) патогенные;

2) условно-патогенные;

Патогенные виды потенциально способны вызывать инфекционное заболевание.

Патогенность – это способность микроорганизмов, попадая в организм, вызывать в его тканях и органах патологические изменения. Это качественный видовой признак, детерминированный генами патогенности – вирулонами. Они могут локализоваться в хромосомах, плазмидах, транспозонах.

Условно-патогенные бактерии могут вызывать инфекционное заболевание при снижении защитных сил организма.

Сапрофитные бактерии никогда не вызывают заболевания, так как они не способны размножаться в тканях макроорганизма.

Реализация патогенности идет через вирулентность – это способность микроорганизма проникать в макроорганизм, размножаться в нем и подавлять его защитные свойства.

Это штаммовый признак, он поддается количественной характеристике. Вирулентность – фенотипическое проявление патогенности.

Количественными характеристиками вирулентности являются:

1) DLM (минимальная летальная доза) – это количество бактерий, при введении которых соответствующим путем в организм лабораторных животных получают 95–98 % гибели животных в эксперименте;

2) LD 50 – это количество бактерий, вызывающее гибель 50 % животных в эксперименте;

3) DCL (смертельная доза) вызывает 100 %-ную гибель животных в эксперименте.

К факторам вирулентности относят:

1) адгезию – способность бактерий прикрепляться к эпителиальным клеткам. Факторами адгезии являются реснички адгезии, адгезивные белки, липополисахариды у грамотрицательных бактерий, тейхоевые кислоты у грамположительных бактерий, у вирусов – специфические структуры белковой или полисахаридной природы;

2) колонизацию – способность размножаться на поверхности клеток, что ведет к накоплению бактерий;

3) пенетрацию – способность проникать в клетки;

4) инвазию – способность проникать в подлежащие ткани. Эта способность связана с продукцией таких ферментов, как гиалуронидаза и нейраминидаза;

5) агрессию – способность противостоять факторам неспецифической и иммунной защиты организма.

К факторам агрессии относят:

1) вещества разной природы, входящие в состав поверхностных структур клетки: капсулы, поверхностные белки и т. д. Многие из них подавляют миграцию лейкоцитов, препятствуя фагоцитозу;

2) ферменты – протеазы, коагулазу, фибринолизин, лецитиназу;

3) токсины, которые делят на экзо– и эндотоксины.

Экзотоксины – высокоядовитые белки. Они термолабильны, являются сильными антигенами, на которые в организме вырабатываются антитела, вступающие в реакции токсинонейтрализации. Этот признак кодируется плазмидами или генами профагов.

Эндотоксины – сложные комплексы липополисахаридной природы. Они термостабильны, являются слабыми антигенами, обладают общетоксическим действием. Кодируются хромосомными генами.

Инфекционная доза, которая для человека не установлена, и серьезность конечной инфекции явно зависят от нескольких факторов, таких как путь заражения, истощение и другие аспекты состояния здоровья инфицированного и, вероятно, от относительной вирулентности инфицирующего штамма. При оценке риска неизбежна зависимость от информации о тестах на животных. Опубликованные данные по инфицирующей и летальной дозе для животных переносятся и на человека (Watson and Keir, 1994).

Кожная инфекция. Для начала кожной инфекции, по-видимому, не требуется большого количества спор, но споры должны проникнуть в субэпидермальные ткани через порез или ранку. Риск заражения значительно снижается при использовании на опасных работах соответствующей одежды и перчаток, перевязкой ран и другими гигиеническими мерами.

Легочная (ингаляционная) инфекция. Зарегистрированная LD50 у нечеловеческих приматов составляет от 2 500 до 760 000 спор (Meselson et al., 1994; Watson and Keir, 1994). US Department of Defence основывает свои стратегические планы, исходя из LD50 для человека, равной 8 000 - 10 000 спор (Meselson et al., 1994). Тем не менее единственными строго определенными данными по ингаляционной инфицирующей дозе для человека являются данные, полученные в ходе исследовании на фабриках по переработке козьей шерсти, приведенные ранее. В любом случае, для того, чтобы риск легочной сибирской язвы стал значительным, очевидно необходима существенная экспозиция. В недавних исследованиях (Turnbull et al., 1998) наибольшие уровни в пробах воздуха от 3 до 9 м по ветру от disturbed dry сухой остаток the highest levels found in air sampled 3 to 9 m downwind from disturbed dry, dusty anthrax carcass sites in Namibia were 20 to 40 colony forming units of spores per cubic metre.

Это соответствует сдержанным оценкам о том, что обычному человеку, проявляющему умеренную активность, требуется около 2,5 мин., чтобы вдохнуть одну спору. Более того, установлено, что при размерах частиц более 5 µm они достигают альвеол легких с возрастающими трудностями. Следовательно, вероятность того, что вдыхаемые споры проникнут внутрь достаточно глубоко, чтобы индуцировать легочную форму сибирской язвы, сильно зависит от размеров частиц, к которым споры прикреплены.

Следовательно, риск заболевания легочной формой сибирской язвы вне промышленных условий чрезвычайно низок.

Оральный путь инфекции. Информации об инфекционной дозе через оральные ворота очень мало, однако то, что верно для кожных покровов, в большой степени справедливо и для орофарингеального и гастроинтестинального эпителия. Вероятность инфицирования, очевидно, значительно увеличивается, если не прямо зависит от того, есть ли пораженные участки эпителия, через которые споры могу проникнуть внутрь и дать начало инфекции.

При оценке риска необходимо также учитывать тот факт, что сибирская язва хорошо поддается лечению, если диагноз установлен на ранних стадиях болезни. Сведения о возможной экспозиции также являются важной составляющей для стабилизации положения.

Таким образом, можно выделить главные эпизоотологические критерии сибирской язвы.

1. Восприимчивые животные. Сибирской язвой болеют крупный рогатый скот, овцы, козы, лошади, олени, верблюды, буйволы, свиньи. Этот список пополнили представители многих видов диких животных: слоны, водяные и африканские буйволы, лесные бизоны, белохвостые олени, антилопы-куду, лошадиная антилопа, лесная антилопа (дукер), антилопа импала, антилопа канна, стенбоки, зебры Бурчелла, бегемоты, болотные козлы, страусы, хорьки, ослы. В 1996 году появилось сообщение о заболевании диких гиеновых собак (Coper J.E.,1996). 36 видов африканских диких животных погибают от антракса.

2. Источники возбудителя инфекции и факторы его передачи. Наибольшую опасность представляют больные животные, выделяющие возбудитель во внешнюю среду. Огромную опасность представляют места гибели или захоронения павших от сибирской язвы животных, неубранные трупы, которые растаскивают хищники. Установлено, что наиболее высокая концентрация спор Bac. Anthracis отмечена вокруг трупа в радиусе до 5 метров (до 10 5 спор на 1 г почвы). В фекалиях гиен также высокая концентрация возбудителя, т.к. они поедают трупы павших от антракс животных. Ниже концентрация спор в фекалиях грифов, которые питаются на более свежих трупах. У львов, гиен и шакалов обнаружен высокий титр антител к протективному сибиреязвенному антигену (Lindeque P.M.,1996).

Занос сибирской язвыв благополучные страны чаще всего происходит с инфицированным мясом и мясными продуктами, а также с костной мукой. Такие случаи отмечены в Норвегии, Непале, Индонезии и т.д.

Подчеркивается роль насекомых (членистоногих) как переносчиков возбудителя антракс особенно на территории Индии и Канады.

3. Стационарность сибирской язвы. Это наиболее яркая эпизоотологическая особенность сибирской язвы. В ранее неблагополучных пунктах спустя многие десятилетия полного благополучия вновь возникали случаи сибирской язвы. Как правило, это связано со стихийными бедствиями (наводнениями, землетрясениями, оползнями, пыльными бурями и т.п.), а также с проведением различного вида земляных, строительных и мелиоративных работ. Отмечены вспышки антракса в Австралии и США на трассах перегона скота спустя не менее ста лет после первых зарегистрированных случаев. Ранее инфицированные пастбища многие десятилетия сохраняют опасность.

4. Сезонность болезни. Периодичность. Особой закономерности в проявлении сибирской язвы не просматривается, интервалы между крупными эпизоотиями составляют в разных регионах 3-5 лет и более.Сезонность просматривается довольно четко, но зависит от географии болезни, от климатических, а иногда и хозяйственных условий. Как правило, вспышки регистрируются чаще в теплое время года. Инцидентность повышается в условиях засухи.

5. Особенности процесса в современных условиях. Благодаря налаженному контролю за этой инфекцией, системе мероприятий с применением высокоэффективных средств профилактики эпизоотический процесс характеризуется лишь проявлением спорадических, единичных случаев. В ряде случаев благополучие достигается широкомасштабной вакцинацией животных. Однако сохраняются регионы, где наблюдаются эпизоотии антракс, особенно часто среди свободно живущих диких животных.

Благодаря наличию споровых форм, бактерия сибирской язвы всегда рассматривалась как объект разработок биологического оружия массового поражения. При наличии соответствующих погодных условий, 50 килограмм сибириязвенных спор, распыленных с самолета, могут покрыть территорию в 20 квадратных километров, при этом (благодаря маленьким размерам спор) будут поражены все жители независимо от того, находятся ли они в помещении или на улице. По расчетам ВОЗ, на каждые 5 млн. случаев пораженной таким образом популяции будет 250 тыс. заболевших и до 100 тыс. жертв. По оценкам американских военных достаточно лишь 100 килограмм спор для того, чтобы биотеррористы смогли убить до 3 млн. человек в г.Вашингтоне, округ Колумбия.Иллюстрацией опасности сибирской язвы может послужить последний случай массового заражения легочной формой, который имел место в России в 1979 г., в Свердловске, где заболело 79 человек, 68 из которых погибли.

Ещё во время второй мировой войны остров Gruinard был местом первого научного испытания Bac.anthracis в качестве потенциального агента биологического оружия.

Испытания подтвердили, что жизнеспособные споры антракса можно с помощью взрыва рассеивать в виде облака, которое вызывало летальное поражение при вдыхании чувствительными млекопитающими. Более чем через 20 лет большое количество жизнеспособных высоковирулентных спор было обнаружено в почве. В 1986 году проведена деконтаминация почвы с предварительным сжиганием растительности. Формальдегид растворяли в морской воде. Наиболее эффективным оказалось использование 5%-го раствора формальдегида из расчета 50 литровкв.м. Через 2 месяца были взяты пробы почвы. В 9 местах обнаружены споры возбудителя. Эти участки были повторно обработаны формальдегидом посредством поверхностной ирригации. В октябре 1987 года споры антракса в этих местах не были обнаружены.

Я наткнулся на термин «минимальная инфекционная доза» (например, ВИЧ), но не совсем понимаю, что это? Почему он не всегда равен 1 вирусной частице? Я ожидаю, что 1 счастливый вирус сможет заразить, как 1 счастливая искра может вызвать пожар.

На ум приходят следующие варианты:

  • Несколько частиц одного и того же вируса должны действовать совместно, чтобы вызвать их размножение;
  • Существует приблизительно 100% работоспособного, но ограниченного использования, который сбивает первые N вирусов;
  • Вероятность заражения ниже, чем у некоторых%, не учитывается статистикой.

В целом, как вероятность заражения и степень тяжести коррелируют с количеством частиц? Это линейно (удвоить количество вирусов => двойная вероятность или заражение) или что-то более хитрое?

anongoodnurse

Вы только что ответили на свой вопрос. «Я ожидаю, что 1 счастливый вирус сможет заразить вас, как одна счастливая искра может вызвать пожар». Как часто искра - одиночная искра - зажигает огонь? Сколько раз будет ударить кремня, чтобы получить достаточно искр, чтобы он попадал в то место, которое необходимо для начала пожара? Остальная часть вашего ответа зависит от вируса и хоста.

Тогда следует сказать не «минимальная инфекционная доза», а «минимальная доза, вызывающая заражение с достоверностью N%» или «вероятность заражения одним вирусом».

Рони Сайба

Значение подразумевается в термине. Помните, что научный вывод основан на повторных наблюдениях. Наблюдения, близкие к среднему, с большей вероятностью будут иметь большее значение, чем редкие выбросы.

Ответы

Брайан Краузе

наименьшее количество инфекционного материала, который регулярно производит инфекцию

(акцент мой)

Слово «минимум» здесь не подразумевается как строгий минимум, оно подразумевается как статистическая граница, абсолютная вероятность которой зависит от типов проведенных испытаний и их присущих точности / неточности.

Причины, по которым этот «минимум» больше 1, могут включать:

    Вероятность того, что данная частица действительно найдет подходящую клетку-хозяина, войдет в клетку и размножится; отказы могут произойти на многих этапах этой цепи

    Скорость реакции / реакции иммунной системы. При низких уровнях воздействия иммунная система может обнаруживать и очищать инфекцию с большей скоростью, чем она может распространяться, так что инфекция остается бессимптомной. Некоторые вакцины используют ослабленные или низкие дозы патогенов специально для того, чтобы вызвать иммунный ответ. Смысл в том, что ослабленный патоген не будет распространяться достаточно быстро для преодоления иммунного ответа и не будет вызывать полное заболевание.

    Клиренс инфекционного агента до того, как он достигнет симптоматического уровня. Это, вероятно, относится больше к бактериям, но я не понимаю, почему это не может также относиться к вирусам. Я думаю, что лучшим примером является воздействие бактерий, вызывающих желудочно-кишечные инфекции, таких как E.coli или Salmonella. Небольшое количество может расти и размножаться в кишечнике, но они растут медленно, если они не присутствуют в достаточно высокой концентрации, и они могут проходить через кишечник, прежде чем вызвать какие-либо заметные симптомы.

Минимальная инфекционная доза также может варьироваться от человека к человеку или из-за факторов окружающей среды (например, см. ).

Ward, RL, Akin, EW, & D"Alessio, DJ (1984). Минимальная инфекционная доза вирусов животных. Критические обзоры в области экологического контроля, 14 (4), 297-310.

Yezli, S. & Otter, JA (2011). Минимальная инфекционная доза основных респираторных и кишечных вирусов человека, передаваемых через пищу и окружающую среду. Пищевая и экологическая вирусология, 3 (1), 1-30.

Таким образом, если нет точного порога вероятности для слова «регулярно», это не является строгим определением. Это как 0,2% или 2% или 20% или 99,7%?

Брайан Краузе

@Vi. Точно, это не строгое определение. Отдельные работы, которые представляют минимальную инфекционную дозу, объясняют их методологию.