15 хромосома заболевания. Кариотип и хромосомная патология (15 хромосома). Диагностика хромосомных аномалий

В основу статьи положены работы проф. Буэ.

Остановка развития зародыша в дальнейшем приводит к изгнанию плодного яйца, что проявляется в виде самопроизвольного выкидыша. Однако во многих случаях остановка развития происходит на очень ранних сроках и сам факт зачатия остается неизвестным для женщины. В большом проценте случаев такие выкидыши связаны с хромосомными аномалиями у зародыша.

Самопроизвольные выкидыши

Самопроизвольные выкидыши, определением которых служит "самопроизвольное прерывание беременности между сроком зачатия и сроком жизнеспособности плода", во многих случаях с большим трудом поддаются диагностике: большое число выкидышей происходит на очень ранних сроках: задержки месячных не происходит, или эта задержка настолько мала, что сама женщина не подозревает о беременности.

Клинические данные

Изгнание плодного яйца может произойти внезапно, или ему могут предшествовать клинические симптомы. Чаще всего угроза выкидыша проявляется кровянистыми выделениями и болями внизу живота, переходящими в схватки. Далее следуют изгнание плодного яйца и исчезновение признаков беременности.

Клиническое обследование может выявить несоответсвие между предполагаемым сроком беременности и размерами матки. Уровни гормонов в крови и моче могут быть резко снижены, указывая на отсутствие жизнеспособности зародыша. Ультразвуковое исследование позволяет уточнить диагноз, выявляя либо отсутствие зародыша ("пустое плодное яйцо"), либо отставание в развитии и отсутствие сердцебиения

Клинические проявления самопроизвольного выкидыша значительно варьируют. В одних случаях выкидыш проходит незамеченным, в других — сопровождается кровотечением и может потребовать выскабливания полости матки. Хронология симптоматики может косвенно указывать на причину самопроизвольного выкидыша: кровянистые выделения с ранних сроков беременности, остановка роста матки, исчезновение признаков беременности, "немой" период в течение 4-5 недель, а затем изгнание плодного яйца чаще всего свидетельствуют о хромосомных нарушениях зародыша, а соответствие срока развития зародыша сроку выкидыша говорит в пользу материнских причин невынашивания беременности.

Анатомические данные

Анализ материала самопроизвольных выкидышей, сбор которого был начат в начале двадцатого века в Институте Карнеги, позволил выявить огромный процент аномалий развития среди абортусов ранних сроков

В 1943 году Хертиг и Шелдон опубликовали результаты патологоанатомического исследования материала 1000 выкидышей на ранних сроках. Материнские причины невынашивания беременности были ими исключены в 617 случаев. Современные данные указывают на то, что мацерированные зародыши во внешне нормальных оболочках тоже могут быть связаны с хромосомными аномалиями, что в сумме составляет около 3/4 всех случаев данного исследования.

Морфологическое исследование 1000 абортусов (по Hertig и Sheldon, 1943)
Грубые патологические нарушения плодного яйца:
плодное яйцо без зародыша или с недифференцированным зародышем
489
Локальные аномалии зародышей 32
Аномалии плаценты 96 617
Плодное яйцо без грубых аномалий
с мацерированными зародышами 146
763
с немацерированными зародышами 74
Аномалии матки 64
Другие нарушения 99

Дальнейшие исследования Микамо и Миллера и Полланда позволили уточнить связь между сроком выкидыша и частотой нарушений развития зародыша. Оказалось, что чем меньше срок выкидыша, тем частота аномалий выше. В материалах выкидышей, происшедших до 5-й недели после зачатия макроскопические морфологические аномалии плодного яйца встречаются в 90% случаев, при сроке выкидыша от 5 до 7 недель после зачатия — в 60%, при сроке больше 7 недель после зачатия — менее, чем в 15—20%.

Важность значения остановки развития зародыша в ранних самопроизвольных выкидышах была показана прежде всего фундаментальными исследованиями Артура Хертига, который в 1959 г. опубликовал результаты исследования человеческих зародышей до 17 дней после зачатия. Это был плод его 25-летней работы.

У 210 женщин в возрасте до 40 лет, идущих на операцию гистерэктомии (удаления матки) дата операции была сопоставлена с датой овуляции (возможного зачатия). После операции матки подвергались самому тщательному гистологическому исследованию на предмет выявления возможной беременности малого срока. Из 210 женщин только 107 были оставлены в исследовании в связи с обнаружением признаков овуляции, и отсутствием грубых нарушений труб и яичников, препятствующих наступлению беременности. Было обнаружено 34 плодных яйца, из них 21 плодное яйцо было внешне нормальным, а 13 (38%) имело явные признаки аномалий, которые, по мнению Хертига, обязательно привели бы к выкидышу или на этапе имплантации или вскоре после имплантации. Поскольку в то время не было возможности проведения генетического исследования плодных яиц, причины нарушений развития зародышей оставались неизвестными.

При обследовании женщин с подтвержденной фертильностью (все пациентки имели по несколько детей) было обнаружено, что одно из трех плодных яиц имеет аномалии и подвергается выкидышу до появления признаков беременности.

Эпидемиологические и демографические данные

Нечеткая клиническая симптоматика ранних самопроизвольных выкидышей приводит к тому, что достаточно большой процент выкидышей на малых сроках проходит незамеченным женщинами.

В случае клинически подтвержденных беременностей около 15% всех беременностей заканчивается выкидышем. Большая часть самопроизвольных выкидышей (около 80%) происходит в первом триместре беременности. Однако если принять во внимание тот факт, что выкидыши часто случаются спустя 4-6 недель после остановки развития беременности, можно сказать, что с первым триместром связано более 90% всех самопроизвольных выкидышей.

Специальные демографические исследования позволили уточнить частоту внутриутробной смертности. Так, Френч и Бирман в 1953 — 1956 гг. регистрировали все беременности у женщин острова Канаи и показали, что из 1000 беременностей, диагностированных при сроке после 5 недель, 237 не увенчались рождением жизнеспособного ребенка.

Анализ результатов нескольких исследований позволил Леридону составить таблицу внутриутробной смертности, включающей в себя и неудачи оплодотворения (половой акт в оптимальные сроки — в течение суток после овуляции).

Полная таблица внутри утробной смертности (на 1000 яйцеклеток, подвергшихся риску оплодотворения) (по Leridon, 1973)
Недели после зачатия Остановка развития с последующим изгнанием Процент продолжающихся беременностей
16* 100
0 15 84
1 27 69
2 5,0 42
6 2,9 37
10 1,7 34,1
14 0,5 32,4
18 0,3 31,9
22 0,1 31,6
26 0,1 31,5
30 0,1 31,4
34 0,1 31,3
38 0,2 31,2
* — неудачи зачатия

Все эти данные указывают на огромную частоту самопроизвольных выкидышей и на важную роль нарушений развития плодного яйца в этой патологии.

Эти данные отражают общую частоту нарушений развития, не выделяя среди них конкретные экзо- и эндогенные факторы (иммунологические, инфекционные, физические, химические и т. д.).

Важно отметить, что независимо от причины повреждающего воздействия, при исследовании материала выкидышей обнаруживается очень большая частота генетический нарушений (хромосомных аберраций (на сегодня изучены лучше всего) и генных мутаций) и аномалий развития, как, например, дефекты развития нервной трубки.

Хромосомные аномалии, ответственные за остановку развития беременности

Цитогенетические исследования материала выкидышей позволили уточнить характер и частоту тех или иных хромосомных аномалий.

Общая частота

При оценке результатов больших серий анализов следует иметь в виду следующее. На результаты исследований подобного рода могут оказать значительное влияние следующие факторы: способ сбора материала, относительная частота более ранних и более поздних выкидышей, доля материала искусственных абортов в исследовании, часто не поддающаяся точной оценке, успех культивирования клеточных культур абортуса и хромосомного анализа материала, тонкие методы обработки мацерированного материала.

Общая оценка частоты хромосомных аберраций при невынашивании беременности составляет около 60%, а в первом триместре беременности — от 80 до 90%. Как будет показано ниже, анализ, основанный на стадийности развития зародыша, позволяет сделать гораздо более точные выводы.

Относительная частота

Практически все большие исследования хромосомных аберраций в материале выкидышей дали поразительно сходные результаты относительно характера нарушений. Количественные аномалии составляют 95% всех аберраций и распределяются следующим образом:

Количественные хромосомные аномалии

Различные типы количественных хромосомных аберраций могут возникать в результате:

  • сбоев мейотического деления : речь идет о случаях "нон-дисджанкшн" (неразделения) парных хромосом, что приводит к появлению либо трисомии, либо моносомии. Неразделение может происходить как во время первого, так и во время второго мейотического деления, и может касаться как яйцеклеток, так и сперматозоидов.
  • сбои, возникающие при оплодотворении: : случаи оплодотворения яйцеклетки двумя сперматозоидами (диспермия), в результате чего возникает триплоидный зародыш.
  • сбои, возникающие во время первых митотических делений : полная тетраплоидия возникает в случае, когда первое деление привело к удвоению хромосом, но неразделению цитоплазмы. Мозаики возникают в случае подобных сбоев на этапе последующих делений.

Моносомии

Моносомия X (45,X) представляет одну из часто встречающихся аномалий в материале самопроизвольных выкидышей. При рождении она соответствует синдрому Шерешевского-Тернера, и при рождении она встречается реже, чем другие количественные аномалии половых хромосом. Эта бросающаяся в глаза разница между относительно высокой частотой обнаружения лишних X-хромосом у новорожденных и относительно редким обнаружением моносомии X у новорожденных указывает на высокую частоту летальности моносомии X у зародыша. Кроме того, обращает на себя внимание очень большая частота мозаик у больных с синдромом Шерешевского-Тернера. В материале выкидышей, наоборот, мозаики с моносомией X крайне редки. Данные исследований показали, что только менее 1% всех моносомий X доходит до срока родов. Моносомии аутосом в материале выкидышей встречаются довольно редко. Это очень контрастирует с высокой частотой соответствующих трисомий.

Трисомии

В материале выкидышей трисомии представляют более половины всех количественных хромосомных аберраций. Обращает на себя внимание то, что в случаях моносомий недостающей хромосомой обычно оказывается X-хромосома, а в случаях избыточных хромосом, дополнительная хромосома чаще всего оказывается аутосомой.

Точная идентификация дополнительной хромосомы стала возможна благодаря методу G-бэндинга. Исследования показали, что все аутосомы могут принимать участие в нон-дисджанкшн (см. таблицу). Обращает на себя внимание, что три хромосомы, чаще всего встречающиеся при трисомиях новорожденных (15-я, 18-я и 21-я) чаще всего обнаруживаются и при летальных трисомиях у зародышей. Вариации относительных частот различных трисомий у зародышей отражают во многом сроки, на которых происходит гибель зародышей, поскольку, чем более летальной является комбинация хромосом, тем на более ранних сроках происходит остановка развития, тем реже будет обнаруживаться такая аберрация в материалах выкидышей (чем меньше срок остановки развития, тем труднее обнаружить такой зародыш).

Лишняя хромосома при летальных трисомиях у зародыша (данные 7 исследований: Буэ (Франция), Карр (Канада), Кризи (Великобритания), Дилл (Канада), Кадзи (Швейцария), Такахара (Япония), Теркелсен (Дания))
Дополнительная аутосома Количество наблюдений
A 1
2 15
3 5
B 4 7
5
C 6 1
7 19
8 17
9 15
10 11
11 1
12 3
D 13 15
14 36
15 35
E 16 128
17 1
18 24
F 19 1
20 5
G 21 38
22 47

Триплоидии

Крайне редко наблюдаемые при мертворождениях, триплоидии составляют пятую по частоте хромосомную аномалию в материале выкидыше. В зависимости от соотношения половых хромосом может быть 3 варианта триплоидий: 69XYY (самая редкая), 69, XXX и 69, XXY (самая частая). Анализ полового хроматина показывает, что при конфигурации 69, XXX чаще всего обнаруживается только одна глыбка хроматина, а при конфигурации 69, XXY чаще всего половой хроматин не обнаруживается.

Приведенный ниже рисунок иллюстрирует различные механизмы, приводящие к развитию триплоидии (диандрию, дигинию, диспермию). С помощью специальных методов (хромосомные маркеры, антигены тканевой совместимости) удалось установить относительную роль каждого из этих механизмов в развитии триплоидии у зародыша. Оказалось, что на 50 случаев наблюдений триплоидия была следствием дигинии в 11 случаях (22%), диандрии либо диспермии — в 20 случаях (40%), диспермии — в 18 случаях (36%).

Тетраплоидии

Тетраплоидии встречаются примерно в 5% случаев количественных хромосомных аберраций. Чаще всего встречаются тетраплоидии 92, XXXX. Такие клетки всегда содержат 2 глыбки полового хроматина. В клетках с тетраплоидией 92, XXYY никогда не бывает видно полового хроматина, но в них обнаруживают 2 флуоресцирующие Y-хромосомы.

Двойные аберрации

Большая частота хромосомных аномалий в материале выкидышей объясняет высокую частоту комбинированных аномалий в одном и том же зародыше. Напротив, у новорожденных комбинированные аномалии крайне редки. Обычно в таких случаях наблюдаются комбинации аномалии половой хромосомы и аномалии аутосомы.

В связи с более высокой частотой аутосомных трисомий в материале выкидышей, при комбинированных хромосомных аномалиях у абортусов чаще всего встречаются двойные аутосомные трисомии. Трудно сказать, связаны ли такие трисомии с двойным "нон-дисджанкшн" в одной и той же гамете, или со встречей двух аномальных гамет.

Частота сочетаний различных трисомий в одной и той же зиготе носит случайный характер, что позволяет предположить независимость друг от друга появления двойных трисомий.

Комбинация двух механизмов, приводящих к появлению двойных аномалий, позволяет объяснить появление других аномалий кариотипа, встречающихся при выкидышах. "Нон-дисджанкшн" при образовании одной из гамет в сочетании с механизмами образования полиплоидии объясняет появление зигот с 68 или 70 хромосомами. Сбой первого митотического деления у такой зиготы с трисомией может приводить к таким кариотипам, как 94,XXXX,16+,16+.

Структурные хромосомные аномалии

Согласно классическим исследованиям, частота структурных хромосомных аберраций в материале выкидышей составляет 4—5%. Однако многие исследования были сделаны до широкого использования метода G-бэндинга. Современные исследования указывают на более высокую частоту структурных хромосомных аномалий у абортусов. Обнаруживаются самые разные виды структурных аномалий. Примерно в половине случаев эти аномалии являются унаследованными от родителей, примерно в половине случаев они возникают de novo .

Влияние хромосомных аномалий на развитие зиготы

Хромосомные аномалии зиготы проявляются как правило уже в первые недели развития. Выяснение конкретных проявлений каждой аномалии сопряжено с целым рядом трудностей.

Во многих случаях установление срока беременности при анализе материала выкидышей крайне затруднено. Обычно сроком зачатия считается 14-й день цикла, но у женщин с невынашиванием беременности часто бывают задержки цикла. Кроме того, очень трудно бывает установить дату "смерти" плодного яйца, поскольку от момента гибели до выкидыша может пройти много времени. В случыае триплоидии этот период может составить 10—15 недель. Применение гормональных препаратов может еще более удлиннить это время.

С учетом этих оговорок, можно сказать, что чем меньше срок беременности на момент гибели плодного яйца, тем выше частота хромосомных аберраций. Согласно исследованиям Кризи и Лоритсена, при выкидышах до 15 недель беременности частота хромосомных аберраций составляет около 50%, при сроке 18 — 21 неделя — около 15%, при сроке более 21 недели — около 5—8%, что примерно соответствует частоте хромосомных аберраций в исследованиях перинатальной смертности.

Фенотипические проявления некоторых летальных хромосомных аберраций

Моносомии X обычно останавливаются в развитии к 6 неделям после зачатия. В двух третях случаев плодный пузырь размером 5—8 см не содержит зародыша, но существует шнурообразное образование с элементами эмбриональной ткани, остатками желточного мешка, плацента содержит субамниотические тромбы. В одной трети случаев плацента имеет такие же изменения, но обнаруживается морфологически неизмененный зародыш, погибший в возрасте 40—45 дней после зачатия.

При тетраплоидиях развитие останавливается к сроку 2-3 недели после зачатия, морфологически эта аномалия характеризуется "пустым плодным мешком".

При трисомиях наблюдаются различные типы аномалий развития, в зависимости от того, какая хромосома является лишней. Однако в подавляющем большинстве случаев развитие останавливается на очень ранних сроках, элементов зародыша не обнаруживается. Это классический случай "пустого плодного яйца" (анэмбрионии).

Трисомия 16, очень частая аномалия, характеризуется наличием маленького плодного яйца диаметром около 2,5 см, в полости хориона находится небольшой амниотический пузырек около 5 мм в диаметре и эмбриональный зачаток размером 1—2 мм. Чаще всего развитие останавливается на стадии эмбрионального диска.

При некоторых трисомиях, например, при трисомиях 13 и 14, возможно развитие зародыша до срока около 6 недель. Зародыши характеризуются циклоцефалической формой головы с дефектами закрытия верхнечелюстных холмиков. Плаценты гипопластичны.

Зародыши с трисомиями 21 (синдром Дауна у новорожденных) не всегда имеют аномалии развития, а если и имеют, то незначительные, не могущие служить причиной их гибели. Плаценты в таких случаев бывают бедны клетками, и представляются остановившимися в развитии на ранней стадии. Гибель зародыша в таких случаях представляется следствием плацентарной недостаточности.

Заносы. Сравнительный анализ цитогенетических и морфологических данных позволяет выделить два типа заносов: классический пузырный занос и эмбриональный триплоидный занос.

Выкидыши при триплоидиях имеют четкую морфологическую картину. Это выражается в сочетании полной или (чаще) частичной пузырной дегенерации плаценты и амниотического пузырька с зародышем, размеры которого (зародыша) очень малы по сравнению с относительно большим амниотическим пузырьком. Гистологическое исследование показывает не гипертрофию, а гипотрофию пузырно измененного трофобласта, образующего микрокисты в результате многочисленный инвагинаций.

Напротив, классический пузырный занос не затрагивает ни амниотический мешок, ни зародыш. В пузырьках обнаруживается избыточное образование синцитиотрофобласта с выраженной васкуляризацией. Цитогенетически большинство классических пузырных заносов имеет кариотип 46,XX. Проведенные исследования позволили установить хромосомные сбои, участвующие в образовании пузырного заноса. Было показано, что 2 X-хромосомы в классическом пузырном заносе идентичны и имеют отцовское происхождение. Наиболее вероятным механизмом развития пузырного заноса является истинный андрогенез, возникающий вследствие оплодотворения яйцеклетки диплоидным сперматозоидом, возникшим в результате сбоя второго мейотического деления и последующим полным выключением хромосомного материала яйцеклетки. С точки зрения патогенеза, такие хромосомные нарушения близки к нарушениям при триплоидии.

Оценка частоты хромосомных нарушений в момент зачатия

Можно попробовать расчитать количество зигот с хромосомными аномалиями при зачатии, основываясь на частоте хромосомных аномалий, обнаруживаемых в материале выкидышей. Однако прежде всего следует отметить, что поразительное сходство результатов исследований материала выкидышей, проведенное в разных частях света, говорит о том, что хромосомные сбои в момент зачатия являются очень характерным явлением в репродукции у человека. Кроме того, можно констатировать, что реже всего встречающиеся аномалии (например, трисомии A, B и F) связаны с остановкой развития на очень ранних стадиях.

Анализ относительной частоты различных аномалий, возникающих при нерасхождении хромосом в процессе мейоза, позволяет сделать следующие важные выводы:

1. Единственной моносомией, обнаруживаемой в материале выкидышей, является моносомия X (15% всех аберраций). Напротив, аутосомные моносомии практически не обнаруживаются в материале выкидышей, хотя теоретически их должно быть столько же, сколько и аутосомных трисомий.

2. В группе аутосомных трисомий частота трисомий разных хромосом значительно варьирует. Исследования, выполненные с использованием метода G-бэндинга, позволили установить, что все хромосомы могут быть участницами трисомии, однако некоторые трисомии встречаются гораздо чаще, например, трисомия 16 встречается в 15% случаев всех трисомий.

Из этих наблюдений можно сделать вывод, что, скорее всего, частота нерасхождения разных хромосом приблизительно одинакова, а различная частота аномалий в материале выкидышей связана с тем, что отдельные хромосомные аберрации приводят к остановке развития на очень ранних стадиях и поэтому с трудом поддаются обнаружению.

Эти соображения позволяют приблизительно расчитать реальную частоту хромосомных нарушений в момент зачатия. Расчеты, сделанные Буэ, показали, что каждое второе зачатие дает зиготу с хромосомными аберрациями .

Данные цифры отражают среднюю частоту хромосомных аберраций при зачатии в популяции. Однако данные цифры могут значительно колебаться у разных супружеских пар. У некоторых супружеских пар вероятность возникновения хромосомных аберраций в момент зачатия значительно превышает средний риск в популяции. У таких супружеских пар невынашивание беременности на малых сроках происходит гораздо чаще, чем у остальных супружеских пар.

Данные расчеты подтверждаются другими исследованиями, проведенными с использованием других методов:

1. Классическими исследованиями Хертига
2. Определением уровня хорионического гормона (ХГ) в крови женщин после 10 после зачатия. Часто этот тест оказывается положительным, хотя менструация приходит вовремя или с небольшой задержкой, и субъективно наступления беременности женщина не замечает ("биохимическая беременность")
3. Хромосомный анализ материала, полученного при искусственных абортах показал, что при абортах на сроке 6—9 недель (4—7 недель после зачатия) частота хромосомных аберраций составляет примерно 8%, а при искусственных абортах на сроке 5 недель (3 недели после зачатия) эта частота возрастает до 25%.
4. Было показано, что нерасхождение хромосом в процессе сперматогенеза является очень частым явлением. Так Пирсон и сотр. обнаружили, что вероятность нерасхождения в процессе сперматогенеза для 1-й хромосомы составляет 3,5%, для 9-й хромосомы — 5%, для Y-хромосомы — 2%. Если и другие хромосомы имеют вероятность нерасхождения примерно такого же порядка, то тогда только 40% всех сперматозоидов имеют нормальный хромосомный набор.

Экспериментальные модели и сравнительная патология

Частота остановки развития

Хотя различия в типе плацентации и количестве плодов затрудняют сравнение риска неразвивающейся беременности у домашних животных и у человека, определенные аналогии проследить можно. У домашних животных процент летальных зачатий колеблется между 20 и 60%.

Изучение летальных мутаций у приматов дало цифры, сравнимые с таковыми у человека. Из 23 бластоцист, выделенных у макак до зачатия, у 10 были грубые морфологические аномалии.

Частота хромосомных аномалий

Только экспериментальные исследования позволяют провести хромосомный анализ зигот на разных стадиях развития и оценить частоту хромосомных аберраций. Классические исследования Форда выявили хромосомные аберрации у 2% зародышей мышей в возрасте от 8 до 11 дней после зачатия. Дальнейшие исследования показали, что это слишком продвинутая стадия развития зародышей, и что частота хромосомных аберраций гораздо выше (см. ниже).

Влияние хромосомных аберраций на развитие

Большой вклад в дело выяснения масштаба проблемы внесли исследования Альфреда Гроппа из Любека и Чарльза Форда из Оксфорда, проводившиеся на так называемых "табачных мышах" (Mus poschiavinus ). Скрещивание подобных мышей с нормальными мышами дает большой спектр триплоидий и моносомий, позволяющих оценить влияние обоих типов аберраций на развитие.

Данные профессора Гроппа (1973 г.) приведены в таблице.

Распределение эуплоидных и анэуплоидных зародышей у гибридных мышей
Стадия развития День Кариотип Всего
Моносомии Эуплоидии Трисомии
До имплантации 4 55 74 45 174
После имплантации 7 3 81 44 128
9—15 3 239 94 336
19 56 2 58
Живые мыши 58 58

Эти исследования позволили подтвердить гипотезу о равной вероятности возникновения моносомий и трисомий при зачатии: аутосомные моносомии возникают с такой же частотой, как и трисомии, но зиготы с аутосомными моносомиями погибают еще до имплантации и не обнаруживаются в материале выкидышей.

При трисомиях гибель зародышей происходит на более поздних сдадиях, но ни один зародыш при аутосомных трисомиях у мышей не доживает до родов.

Исследования группы Гроппа позволили показать, что в зависимости от типа трисомии, зародыши погибают на разных сроках: с трисомиями 8, 11, 15, 17 — до 12 дня после зачатия, с трисомиями 19 — ближе к сроку родов.

Патогенез остановки развития при хромосомных аномалиях

Исследование материала выкидышей показывает, что во многих случаях хромосомных аберраций эмбриогенез резко нарушается, так что элементов эмбриона не обнаруживается вообще ("пустые плодные яйца", анэмбриония) (остановка развития до срока 2-3 недель после зачатия). В других случаях удается обнаружить элементы зародыша, часто неоформленные (остановка развития на сроке до 3-4 недель после зачатия). При наличии хромосомных аберраций эмбриогенез часто или вообще невозможен, или резко нарушается с самых ранних стадий развития. Проявления таких нарушений выражены в гораздо большей степени в случае аутосомных моносомий, когда развитие зиготы останавливается в первые дни после зачатия, но и в случае трисомий хромосом, имеющих ключевое значение для эмбриогенеза, развитие также прекращается в первые дни после зачатия. Так, например, трисомия 17 обнаруживается только у зигот, остановившихся в развитии на самых ранних стадиях. Кроме того, многие хромосомные аномалии связаны вообще с пониженной способностью к делению клеток, как показывает изучение культур таких клеток in vitro .

В других случаях развитие может продолжаться до 5—6—7 недель после зачатия, в редких случаях — дольше. Как показали исследования Филиппа, в таких случаях гибель плода объясняется не нарушением эмбрионального развития (обнаруживаемые дефекты сами по себе не могут быть причиной смерти зародыша), а нарушением формирования и функционирования плаценты (стадия развития плода опережает стадию формирования плаценты.

Исследования культур клеток плаценты при различных хромосомных аномалиях показали, что в большинстве случаев деление плацентарных клеток происходит гораздо медленнее, чем при нормальном кариотипе. Это во многом объясняет, почему новорожденные с хромосомными аномалиями обычно имеют низкую массу тела и сниженную массу плаценты.

Можно предположить, что многие нарушения развития при хромосомных аберрациях связаны именно с пониженной способностью клеток к делению. При этом возникает резкая диссинхронизация процессов развития зародыша, развития плаценты и индукции дифференциации и миграции клеток.

Недостаточное и запоздалое формирование плаценты может приводить к нарушению питания и к гипоксии зародыша, а также — к снижению гормональной продукции плаценты, что может быть дополнительной причиной развития выкидышей.

Исследования клеточных линий при трисомиях 13, 18 и 21 у новорожденных показало, что клетки делятся медленнее, чем при нормальном кариотипе, что проявляется в снижении плотности клеток в большинстве органов.

Загадкой является то, почему при единственной аутосомной трисомии, совместимой с жизнью (трисомия 21, синдром Дауна), в одних случаях происходит задержка развития зародыша на ранних стадиях и самопроизвольный выкидыш, а в других — ненарушенное развитие беременности и рождение жизнеспособного ребенка. Сравнение клеточных культур материала выкидышей и доношенных новорожденных при трисомии 21 показало, что различия в способности клеток к делению в первом и втором случаях резко различается, что возможно объясняет разную судьбу таких зигот.

Причины количественных хромосомных аберраций

Изучение причин хромосомных аберраций крайне затруднено, прежде всего из-за высокой частоты, можно сказать, всеобщности этого явления. Очень трудно корректно собрать контрольную группу беременных женщин, с большим трудом поддаются изучению нарушения сперматогенеза и оогенеза. Несмотря на это, некоторые этиологические факторы повышения риска хромосомных аберраций выяснить удалось.

Факторы, напрямую связанные с родителями

Влияние возраста матери на вероятность рождения ребенка с трисомией 21 наводит на мысль о возможном влиянии возраста матери на вероятность возникновения летальных хромосомных аберраций у зародыша. Приводимая ниже таблица показывает связь возраста матери с кариотипом материала выкидышей.

Средний возраст матери при хромосомных аберрациях абортусов
Кариотип Число наблюдений Средний возраст
Нормальный 509 27,5
Моносомия X 134 27,6
Триплоидии 167 27,4
Тетраплоидия 53 26,8
Аутосомные трисомии 448 31,3
Трисомии D 92 32,5
Трисомии E 157 29,6
Трисомии G 78 33,2

Как видно из таблицы, не было обнаружено связи между возрастом матери и самопроизвольными выкидышами, связанными с моносомией X, триплоидией или тетраплоидией. Повышение среднего возраста матери отмечено для аутосомных трисомий в целом, но по разным группам хромосом цифры были получены разные. Однако общее число наблюдений в группах недостаточно, чтобы уверенно судить о каких-либо закономерностях.

Возраст матери в большей степени связан с повышенным риском выкидышей с трисомиями акроцентрических хромосом группы D (13, 14, 15) и G (21, 22), что совпадает и со статистикой хромосомных аберраций при мертворождениях.

Для некоторых случаев трисомий (16, 21) было определено происхождение лишней хромосомы. Оказалось, что возраст матери связан с повышением риска трисомий только в случае материнского происхождения лишней хромосомы. Не было обнаружено связи возраста отца с повышением риска трисомий.

В свете исследований на животных высказываются предположения о возможной связи старения гамет и задержки оплодотворения на риск возникновения хромосомных аберраций. Под старением гамет понимают старение сперматозоидов в половых путях женщины, старение яйцеклетки либо в результате перезрелости внутри фолликула или в результате задержки выхода яйцеклетки из фолликула, либо в результате трубной перезрелости (запоздалого оплодотворения в трубе). Скорее всего, подобные законы действуют и у человека, но достоверных подтверждений этого пока не получено.

Факторы окружающей среды

Было показано, что вероятность хромосомных аберраций при зачатии повышается у женщин, подвергшихся действию ионизирующей радиации. Предполагается связь между риском хромосомных аберраций и действием других факторов, в частности — химических.

Заключение

1. Не каждую беременность удается сохранить на малых сроках. В большом проценте случаев выкидыши обусловлены хромосомными нарушениями у плода, и родить живого ребенка невозможно. Гормональное лечение может отсрочить момент выкидыша, но не может помочь зародышу выжить.

2. Повышенная нестабильность генома супругов является одним из причинных факторов бесплодия и невынашивания беременности. Выявить такие супружеские пары помогает цитогенетическое обследование с анализом на хромосомные аберрации. В некоторых случаях повышенной нестабильности генома специальная антимутагенная терапия может помочь повысить вероятность зачатия здорового ребенка. В других случаях рекомендуется донорская инсеминация или использование донорской яйцеклетки.

3. При невынашивании беременности, обусловленном хромосомными факторами, организм женщины может "запомнить" неблагоприятный иммунологический ответ на плодное яйцо (иммунологический импринтинг). В таких случаях возможно развитие реакции отторжения и на зародыши, зачатые после донорской инсеминации или с использованием донорской яйцеклетки. В таких случаях рекомендуется проведение специального иммунологического обследования.

Для того, чтобы все живое на планете могло плодиться и оставлять после себя потомства, в большинстве случае нужна пара, то есть самец и самка. В мире людей это мужчина и женщина. А вы когда-нибудь задумывались, что будет, если мгновенно исчезнут все мужчины на нашей планете? Сейчас мы узнаем ответ на этот вопрос. Если исчезнут все мужчины на планете, то жизнь кардинально изменится. В первую очередь можно будет наблюдать массовое вымирание человечества, и популяция населения будет уменьшаться на протяжении пары десятков лет. Поскольку солдат и армий практически не будет, то все войны - большие и маленькие, будут невозможными, так как мотивации воевать будет меньше и большинство воинственно настроенных политиков и генералов просто исчезнет. Полиция и все структуры, следящие за порядком, также практически полностью исчезнут, так как преступность по всему миру уменьшиться в разы. Экономика и хозяйство в первые годы придет в упадок, поскольку такими вещами в большей степени занимаются мужчины. Понадобятся года, чтобы женщины научились управлять тем же сельскохозяйственным оборудованием и регулировать работу различных промышленных заводов и фабрик. Через некоторое время получат серьезное развитие альтернативные репродуктивные технологии. Кроме того, будут вкладываться огромные средства в развитие технологий клонирования и все убеждения, которые существуют сегодня – мол, это неэтично и аморально, канут в прошлое. Часть образовательной системы будет перестроена под обучение и выпуск будущих специалистов, которые будут работать на заводах по клонированию людей, так как этот процесс будет масштабным. Всю систему экономического потребления будет лихорадить первые несколько лет, а многие гиганты мирового производства товаров потребления обанкротятся. Это касается как пищевой промышленности, так и сферы услуг и непродовольственных товаров. Вся техника, автомобили, самолеты и тому подобные вещи, начнут ломаться и выходить из строя, так как чинить их будет некому, а на обучение специалистов женщин, которые будут заниматься ремонтом и обслуживанием, уйдет не один год. Поэтому, в первое десятилетие помимо естественной убыли населения еще будут помогать этому процессу резко увеличившееся количество аварий и происшествий. То же самое касается пожаров и различных стихийных бедствий, так как женщин-пожарников в мире существует очень мало, и понадобиться время, чтобы обучить достаточное количество новых пожарников. Туалетные сиденья будут всегда опущенными, а компании, производящие различные товары и услуги для мужчин, просто перестанут существовать. Ватикан опустеет и станет музеем. Мировая экология начнет постепенно восстанавливаться, и не исключено, что через 50-100 лет воздух на земле будет такой же свежий, как в средние века (в 12-15 веках). Если банки спермы останутся, то за них начнется настоящая борьба. Большое количество городов станут брошенными и опустеют, и пейзаж как в чернобыльской Припяти станет обыденным явлением. Учитывая тот факт, что на протяжении 10-20 лет вся жизненная система будет радикально перестраиваться, то женское население вполне может сократиться с 3,5 миллиардов до нескольких десятков миллионов и на планете уже никогда не будет 7 млрд человек. По крайней мере, в обозримом будущем. Несмотря на все это, ученые уже реально вычислили, когда сильный пол может действительно полностью исчезнуть с Земли. Ученые из Австралийской академии наук посчитали, что мужчины полностью вымрут через 5 миллионов лет. А всему виной является Y-хромосома. Она отвечает за образование мужских генов и эта хромосома постепенно разрушается. У женщин есть пара X-хромосом, а у мужчин всего одна Y-хромосома. И эта пара женских хромосом позволяет заменять поврежденные каким-то образом гены. Мужской же хромосоме это сделать гораздо труднее, а порой и вообще невозможно. Конечно же, есть мнения, что медицина сумеет за несколько миллионов лет решить проблему разрушающейся мужской хромосомы. Однако, вполне возможно, что сама человеческая природа может измениться за такое длительное время и может появиться вообще новый тип человека.

Частота врожденных пороков развития составляет 2-3%, еще 5% новорожденных имеют так называемые малые аномалии. Причинные факторы их являются гетерогенными и включают хромосомные аномалии, моногенные заболевания, влияние тератогенов, материнские заболевания (инсулинзависимый сахарный диабет, фенилкетонурия), инфекции (краснуха, цитомегалия и др). Но большинство врожденных аномалий развития является мультифакториальными, т.е. зависят от комбинации генетических факторов и воздействия агрессивных факторов внешней среды.

Что такое пренатальный скрининг

Пренатальный скрининг, диагностика и лечение является относительно новой проблемой в акушерстве. Началом пренатального скрининга была, возможно, эра ультразвуковой диагностики в акушерстве, которая началась около двух десятилетий назад. С открытием новых генов и их фенотипов становится все более возможным пренатальный генетический диагноз. Следует различать понятия скрининга и диагностики.

Пренатальный скрининг позволяет выявить индивидов высокого риска осложнений среди популяции индивидов с низким риском осложнений. Специфичность и чувствительность скрининговых тестов очень важны, учитывая возможность ложноположительных и ложноотрицательных результатов скрининга.

Пренатальная диагностика, конечно, более специфическая, чем скрининг (например, амниоцентез или биопсия хориона), но имеет и больший риск осложнений. Первым шагом по определению риска для плода является скрининг матери о наличии определенных состояний или заболеваний.

Нередко возникает вопрос о вероятности роста частоты у потомков семейных пар, которые получали лечение по поводу бесплодия. Тяжелая олигоспермия и азооспермия ассоциируются со сбалансированными транслокациями хромосом (3-5%), синдромом Кляйнфельтера (47, ХХУ), аномалиями и микроделеции У-хромосомы.

Аномалии Х-хромосомы (ХХУ, ХХХ, Х-мозаицизм при синдроме Тернера) ассоциируются с пониженной фертильностью (субфертильностью), а также увеличением риска хромосомных аномалий у потомков. В 2/3 пациентов с врожденным отсутствием семявыносящих протоков имеет место хотя бы одна мутация гена, который отвечает за развитие кистозного фиброза. Итак, эти пациенты подлежат скринингу на наличие кистозного фиброза. Таким пациентам обычно показана интрацитоплазматическая инъекция сперматозоида в яйцеклетку, хотя наличие мутантного гена по кистозному фиброзу может влиять на репродуктивные намерения.

Хромосомные аномалии

Старший возраст матери является фактором риска хромосомных аномалий в связи с увеличением возможности нерасхождения хромосом в процессе мейоза. Фертилизация гаметы с одной лишней хромосомой приводит к образованию продукта оплодотворения с 47 хромосомами. Следовательно, растет частота анеуплоидии — количества хромосом в продукте оплодотворения, большей или меньшей 46. Нерасхождение хромосом может иметь место в аутосомах (трисомия 21, 13, 18) или половых хромосомах (моносомия 45, Х, или трисомия 47, ХVV, 47, ХХХ и др). Несбалансированные транслокации хромосом сопровождаются аномальным количеством хромосомного материала (целой хромосомы или ее части). Риск для ребенка зависит от типа транслокации.

Факторы риска рождения детей с хромосомными аномалиями

  • Возраст матери 35 лет и старше
  • Рождение детей с хромосомными аномалиями в анамнезе
  • Хромосомные аномалии у родителей, включая сбалансированные транслокации, анеуплоидии, мозаицизм
  • Хромосомные аномалии у близких родственников
  • Аномальные результаты ультразвуковой анатомии плода
  • Аномальные результаты сывороточных скрининговых тестов / аномальный тройной тест (АФП, ​​эстриол)
  • Рождение детей с пороками нервной трубки в анамнезе

Частота хромосомных аномалий у живых новорожденных составляет 0,5%, у ​​мертворожденных — 5%, у ​​абортусов при самопроизвольных выкидышах — 50%. Частой хромосомной аномалией является анеуплоидия — увеличение или недостаток одной хромосомы. У рожденных живыми наиболее часто встречаются такие хромосомные аномалии, как трисомия 21 (1: 800), трисомия 18 и трисомия 13.

Трисомия 16 наиболее часто приводит к самопроизвольным выкидышам, а в случае трисомии 18 в большинстве случаев имеет место мертворождение. При наличии в анамнезе трисомии у плода риск рецидива при повторной беременности составляет 1%. В случае триплоидии обычно имеет место самопроизвольный аборт или гестационная трофобластическая болезнь. В редких случаях ребенок может родиться с триплоидией, но продолжительность жизни не превышает 1 года.

Хромосомные аномалии часто сопровождаются выраженными фенотипическими проявлениями и врожденными пороками развития, хотя их не всегда можно обнаружить при ультразвуковом скрининге.

Наиболее точным методом диагностики хромосомных аномалий является исследование кариотипа плода. Для некоторых хромосомных синдромов (синдром Дауна) существуют скрининговые тесты, например тройной тест:

1) уровень а-фетопротеина;

3) уровень в-субъединицы ХГЧ в сыворотке крови матери.

Синдром Дауна

Скрининг на генетические заболевания

Сегодня известно более 11 000 моногенных заболеваний, которые кодируются одним геном (генетически обусловленные) и передаются от родителей их потомкам. Механизм передачи многих генетических болезней объясняется принципами Менделя.

Аутосомно-доминантные моногенные синдромы встречаются с частотой 1: 200 индивидов; заболевание наблюдается у многих поколений, передается потомкам и рецидивирует с частотой 50%. Примерами аутосомно-доминантных моногенных расстройств могут быть:

  • ахондроплазия,
  • нейрофиброматоз,
  • синдром Марфана,
  • болезнь Хантингтона,
  • семейный полипоз.

Появление аутосомно-доминантных заболеваний у новорожденных от «здоровых» родителей может быть обусловлено ​​следующими причинами:

1. Мозаицизм зародышевых клеток. Мутация может иметь место лишь в популяции зародышевых клеток. Итак, родители являются непораженными, но могут передавать мутацию потомкам.

2. Новые мутации. Рост возраста родителей ассоциируется с увеличением риска аутосомно-доминантных расстройств (ахондроплазии, танатофорной дисплазии, нейрофиброматоза, синдрома Аперта — краниосиностоз). Риск рецидивов у других детей не увеличивается.

3. Вариабельна экспрессия. Тяжесть заболевания может варьировать, и родители могут не распознать мягкие и субклинические мутации.

4. Уменьшенная пенетрантность. Родители могут иметь аномальный ген без клинических проявлений заболевания.

5. Неверное отцовство. Частота неверного отцовства достигает 15%.

Аутосомно-рецессивные моногенные заболевания проявляются в многочисленных родственников при наличии двух пораженных аллелей. Если оба родителя являются носителями пораженного гена, риск заболевания у потомства равен 25% при каждой беременности. Аутосомно-рецессивные заболевания включают кистозный фиброз, серповидно-клеточную анемию, фенилкетонурию, болезнь Тея-Сакса, Канавана и др.

При Х-сцепленных рецессивных синдромах (гемофилия и др.) мать-носитель пораженного гена передает его своим сыновьям. Итак, 50% сыновей могут быть больными и 50% дочерей будут носителями этого гена. Редкие Х-доминантные синдромы могут передаваться от каждого родителя каждому ребенку подобно аутосомно-доминантных синдромов. Фенотип может сильно варьировать, что связано со смешанной пенетрантностью, лионизацией (гетерохроматизацией) Х-хромосомы (синдром ломкой Х-хромосомы) и геномным импринтингом.

Экспансия тринуклеотидных повторов. Некоторые гены содержат участки тройных повторов (например, ССС). Такие участки являются нестабильными и могут увеличиваться в следующих генерациях, этот феномен получил название антиципации. Количество повторений определяет степень поражения индивида. Экспансия тринуклеотидных повторов составляет основу многочисленных генетических расстройств, таких как синдром ломкой (фрагильной) Х-хромосомы, миотоническая дистрофия и болезнь Хантингтона.

Синдром ломкой (фрагильной) Х-хромосомы является наиболее частой причиной семейной задержки умственного развития. Пораженные мужчины имеют типичные черты: большие уши, выступающая челюсть, большие яички, аутичное поведение, легкая или умеренная умственная отсталость. Женщины обычно менее поражены в связи с инактивацией Х-хромосомы.

Ген ломкой Х-хромосомы локализуется в Х-хромосоме и имеет три нуклеотидные повтора (ССС). Нормальные индивиды имеют 6-50 повторов, непораженные носители женского пола могут иметь 50-200 повторов, которые могут распространяться на мейоза до полной мутации при наличии более 200 повторов. Если имеет место полная мутация, ген инактивируется путем метилирования; плод будет пораженным. Тяжесть заболевания зависит от степени Х-инактивации у женщин, степени метилирования и мозаицизма размера повторов.

Женщины-носители премутации имеют 50%-й риск передачи гена с экспансией. Мужчины с премутациею фенотипически являются нормальными, но все их дочери будут носителями премутации. В случае трансмиссии мужчинам количество повторов остается стабильным. Тест на ломку Х-хромосому выполняется с целью выявления количества повторов и степени метилирования.

Показания для тестирования на ломкую Х-хромосому

  • Индивиды с задержкой умственного и общего развития, аутизмом
  • Индивиды с чертами фрагильной Х-хромосомы
  • Индивиды с наличием синдрома фрагильной Х-хромосомы в семейном анамнезе
  • Индивиды с наличием в семейном анамнезе недиагностированной задержки умственного развития
  • Плоды от матерей-носителей

Геномный импринтинг — процесс, при котором активация гена происходит преимущественно в материнской или преимущественно в родительской хромосоме, но не в обеих хромосомах. Нормальное развитие имеет место лишь в том случае, если присутствуют обе копии (материнская и отцовская) импринтинг-ген. Импринтинг-ген неактивен, значит, активный ген теряет (путем делеции) или получает мутацию, в таком случае плод будет пораженным. Лишь несколько генов могут испытывать импринтинга.
Примерами геномного импринтинга может быть синдром Ангельмана и полный пузырный занос (вариант гестационной трофобластической болезни).

Синдром Ангельмана характеризуется тяжелой задержкой умственного развития, атаксической походкой, типичным лицом, пароксизмами смеха и судорогами. Ген синдрома Ангельмана является активным только в материнской унаследованной хромосоме, следовательно, если происходит делеция материнской хромосомы 15 или материнская копия гена имеет мутацию, белковый продукт не образуется и плод будет пораженным.

Синдром Ангельмана также может развиться, если обе копии хромосомы 15 является унаследованными от отца (отсутствие материнской копии хромосомы 15). Это состояние получило название унипарентальной дисомии. Унипарентальная дисомия возникает чаще вследствие потери хромосомы у эмбриона с трисомией или добавления хромосомы у плода с моносомией по этой хромосомой. Каждая из хромосом может быть генетически различной (гетеродисомия) или идентичной (изодисомия), в зависимости от времени возникновения этого феномена — в течение первого или второго мейотического деления, соответственно.

Полный пузырный занос обычно является диплоидным (46, ХХ или Х ¥), но может иметь полностью отцовское происхождение, без материнского хромосомного материала. При таких условиях плод не может развиваться. Полный пузырный занос может сопровождать нормальную многоплодную беременность, но в этом случае возрастает риск материнских осложнений (гипертиреоидизм, преэклампсия, преждевременные роды). В отличие от полного пузырного заноса, частичный пузырный занос обычно является триплоидным (69, ХХХ, 69, ХVV), с дополнительным набором отцовских хромосом.

Триплоидия с дополнительным набором материнских хромосом имеет место при ЗВУР плода, врожденных пороках развития и маленькой плаценте.

Митохондриальное наследование

Митохондрии в цитоплазме яйцеклетки (но не сперматозоида) передаются от матери к ее потомкам. Митохондрия имеет собственную ДНК. Существует несколько генетических заболеваний, вызванных мутациями митохондриальной ДНК, — наследственная оптическая нейропатия Лебера, болезнь Ли (подострая некротизирующая энцефаломиелопатия), миоклоническая эпилепсия с «зазубренными красными волокнами». Экспрессия этих заболеваний является вариабельной.

Примерно 1 из 150 детей рождается с хромосомной аномалией . Эти нарушения вызваны ошибками в количестве или структуре хромосом. Многие дети с хромосомными проблемами имеют психические и/или физические врожденные дефекты. Некоторые хромосомные проблемы в конечном итоге приводят к выкидышу или мертворождению.

Хромосомы – это нитевидные структуры, находящиеся в клетках нашего организма и содержащие в себе набор генов. У людей насчитывается около 20 – 25 тыс. генов, которые определяют такие признаки, как цвет глаз и волос, а также отвечают за рост и развитие каждой части тела. У каждого человека в норме 46 хромосом, собранных в 23 хромосомные пары, в которых одна хромосома – унаследованная от матери, а вторая – от отца.

Причины хромосомных аномалий

Хромосомные патологии обычно являются результатом ошибки, которая происходит во время созревания сперматозоида или яйцеклетки. Почему происходят эти ошибки, пока не известно.

Яйцеклетки и сперматозоиды в норме содержат по 23 хромосомы. Когда они соединяются, они образуют оплодотворенную яйцеклетку с 46 хромосомами. Но иногда во время (или до) оплодотворения что-то идет не так. Так, например, яйцеклетка или сперматозоид могут неправильно развиться, в результате чего в них могут быть лишние хромосомы, или, наоборот, может не хватать хромосом.

При этом клетки с неправильным числом хромосом присоединяются к нормальной яйцеклетке или сперматозоиду, вследствие чего полученный эмбрион имеет хромосомные отклонения.

Наиболее распространенный тип хромосомной аномалии называется трисомией. Это означает, что у человека вместо двух копий конкретной хромосомы имеется три копии. Например, имеют три копии 21-й хромосомы.

В большинстве случаев эмбрион с неправильным числом хромосом не выживает. В таких случаях у женщины происходит выкидыш, как правило, на ранних сроках. Это часто происходит в самом начале беременности, прежде чем женщина может понять, что она беременна. Более чем 50% выкидышей в первом триместре вызваны именно хромосомными патологиями у эмбриона.

Другие ошибки могут возникнуть перед оплодотворением. Они могут привести к изменению структуры одной или нескольких хромосом. У людей со структурными хромосомными отклонениями, как правило, нормальное число хромосом. Тем не менее, небольшие кусочки хромосомы (или вся хромосома) могут быть удалены, скопированы, перевернуты, неуместны или могут обмениваться с частью другой хромосомы. Эти структурные перестройки могут не оказывать никакого влияния на человека, если у него есть все хромосомы, но они просто переставлены. В других случаях такие перестановки могут привести к потере беременности или врожденным дефектам.

Ошибки в делении клеток могут произойти вскоре после оплодотворения. Это может привести к мозаицизму – состоянию, при котором человек имеет клетки с различными генетическими наборами. Например, людям с одной из форм мозаицизма – с синдромом Тернера – не хватает Х-хромосомы в некоторых, но не во всех, клетках.

Диагностика хромосомных аномалий

Хромосомные отклонения можно диагностировать еще до рождения ребенка путем пренатальных исследований, таких как, например, амниоцентез или биопсия хориона, или уже после рождения с помощью анализа крови.

Клетки, полученные в результате этих анализов, выращиваются в лаборатории, а затем их хромосомы исследуются под микроскопом. Лаборатория делает изображение (кариотип) всех хромосом человека, расположенных в порядке от большего к меньшему. Кариотип показывает количество, размер и форму хромосом и помогает врачам выявить любые отклонения.

Первый пренатальный скрининг заключается во взятии на анализ материнской крови в первом триместре беременности (между 10 и 13 неделями беременности), а также в специальном ультразвуковом исследовании задней части шеи ребенка (так называемого воротникового пространства).

Второй пренатальный скрининг проводится во втором триместре беременности и заключается в анализе материнской крови на сроке между 16 и 18 неделями. Этот скрининг позволяет выявить беременности, которые находятся на более высоких рисках по наличию генетических нарушений.

Тем не менее, скрининг-тесты не могут точно диагностировать синдром Дауна или другие. Врачи предлагают женщинам, у которых выявлены аномальные результаты скрининг-тестов, пройти дополнительные исследования – биопсию хориона и амниоцентез, чтобы окончательно диагностировать или исключить эти нарушения.

Самые распространенные хромосомные аномалии

Первые 22 пары хромосом называются аутосомами или соматическими (неполовыми) хромосомами. Наиболее распространенные нарушения этих хромосом включают в себя:

1. Синдром Дауна (трисомия 21 хромосомы) – одно из наиболее распространенных хромосомных отклонений, диагностируемое примерно у 1 из 800 младенцев. Люди с синдромом Дауна имеют различную степень умственного развития, характерные черты лица и, зачастую, врожденные аномалии в развитии сердца и другие проблемы.

Современные перспективы развития детей с синдромом Дауна намного ярче, чем были раньше. Большинство из них имеют ограниченные интеллектуальные возможности в легкой и умеренной форме. При условии раннего вмешательства и специального образования, многие из таких детей учатся читать и писать и с детства участвуют в различных мероприятиях.

Риск синдрома Дауна и других трисомий увеличивается с возрастом матери. Риск рождения ребенка с синдромом Дауна составляет примерно:

  • 1 из 1300 – если возраст матери 25 лет;
  • 1 из 1000 – если возраст матери 30 лет;
  • 1 из 400 – если возраст матери 35 лет;
  • 1 из 100 – если возраст матери 40 лет;
  • 1 из 35 – если возраст матери 45 лет.

2. Трисомии 13 и 18 хромосом – эти трисомии обычно более серьезные, чем синдром Дауна, но, к счастью, довольно редкие. Примерно 1 из 16000 младенцев рождается с трисомией 13 (синдром Патау), и 1 на 5000 младенцев – с трисомией 18 (синдром Эдвардса). Дети с трисомиями 13 и 18, как правило, страдают тяжелыми отклонениями в умственном развитии и имеют множество врожденных физических дефектов. Большинство таких детей умирает в возрасте до одного года.

Последняя, 23-я пара хромосом – это половые хромосомы, называемые хромосомами X и хромосомами Y. Как правило, женщины имеют две Х-хромосомы, а у мужчины одна Х-хромосома и одна Y-хромосома. Аномалии половых хромосом могут вызвать бесплодие, нарушения роста и проблемы с обучением и поведением.

Наиболее распространенные аномалии половых хромосом включают в себя:

1. Синдром Тернера – это нарушение затрагивает приблизительно 1 из 2500 плодов женского пола. У девочки с синдромом Тернера есть одна нормальная Х-хромосома и полностью или частично отсутствует вторая Х-хромосома. Как правило, такие девочки бесплодны и не подвергаются изменениям нормального полового созревания, если они не будут принимать синтетические половые гормоны.

Затронутые синдромом Тернера девушки очень невысокие, хотя лечение гормоном роста может помочь увеличению роста. Кроме того, у них присутствует целый комплекс проблем со здоровьем, особенно с сердцем и почками. Большинство девочек с синдромом Тернера обладают нормальным интеллектом, хотя и испытывают некоторые трудности в обучении, особенно в математике и пространственном мышлении.

2. Трисомия по Х-хромосоме – примерно у 1 из 1000 женщин имеется дополнительная Х-хромосома. Такие женщины отличаются очень высоким ростом. Они, как правило, не имеют физических врожденных дефектов, у них нормальное половое созревание и они способны к деторождению. У таких женщин нормальный интеллект, но могут быть и серьезные проблемы с учебой.

Поскольку такие девушки здоровы и имют нормальный внешний вид, их родители часто не знают, что у их дочери есть . Некоторые родители узнают, что у их ребенка подобное отклонение, если матери во время вынашивания беременности был проведен один из инвазивных методов пренатальной диагностики (амниоцентез или хориоцентез).

3. Синдром Клайнфельтера – это нарушение затрагивает приблизительно 1 из 500 – 1000 мальчиков. У мальчиков с синдромом Клайнфельтера есть две (а иногда и больше) Х-хромосомы вместе с одной нормальной Y-хромосомой. Такие мальчики обычно имеют нормальный интеллект, хотя у многих наблюдаются проблемы с учебой. Когда такие мальчики взрослеют, у них отмечается пониженная секреция тестостерона и они оказываются бесплодными.

4. Дисомия по Y-хромосоме (XYY) – примерно 1 из 1000 мужчин рождается с одной или несколькими дополнительными Y-хромосомами. У такихх мужчин нормальное половое созревание и они не бесплодны. Большинство из них имеют нормальный интеллект, хотя могут быть некоторые трудности в обучении, поведении и проблемы с речью и усвоением языков. Как и в случае с трисомией по Х-хромосоме у женщин, многие мужчины и их родители не знают, что у них есть такая аномалия, пока не будет проведена пренатальная диагностика.

Менее распространенные хромосомные аномалии

Новые методы анализа хромосом позволяют определить крошечные хромосомные патологии, которые не могут быть видны даже под мощным микроскопом. В результате, всё больше родителей узнают, что у их ребенка есть генетическая аномалия.

Некоторые из таких необычных и редких аномалий включают в себя:

  • Делеция – отсутствие небольшого участка хромосомы;
  • Микроделеция — отсутствие очень небольшого количества хромосом, возможно, не хватает только одного гена;
  • Транслокация – часть одной хромосомы присоединяется к другой хромосоме;
  • Инверсия – часть хромосомы пропущена, а порядок генов изменен на обратный;
  • Дублирование (дупликация) – часть хромосомы дублируется, что приводит к образованию дополнительного генетического материала;
  • Кольцевая хромосома – когда на обоих концах хромосомы происходит удаление генетического материала, и новые концы объединяются и образуют кольцо.

Некоторые хромосомные патологии настолько редки, что науке известен только один или несколько случаев. Некоторые аномалии (например, некоторые транслокации и инверсии) могут никак не повлиять на здоровье человека, если отсутствует не генетический материал.

Некоторые необычные расстройства могут быть вызваны небольшими хромосомными делециями. Примерами являются:

  • Синдром кошачьего крика (делеция по 5 хромосоме) – больные дети в младенчестве отличаются криком на высоких тонах, как будто кричит кошка. У них есть существенные проблемы в физическом и интеллектуальном развитии. С таким заболеванием рождается примерно 1 из 20 – 50 тыс. младенцев;
  • Синдром Прадера-Вилл и (делеция по 15 хромосоме) – больные дети имеют отклонения в умственном развитии и в обучении, низкий рост и проблемы с поведением. У большинства таких детей развивается экстремальное ожирение. С таким заболеванием рождается примерно 1 из 10 – 25 тыс. младенцев;
  • Синдром Ди Джорджи (делеция по 22 хромосоме или делеция 22q11) – с делецией в определенной части 22 хромосомы рождается примерно 1 из 4000 младенцев. Данная делеция вызывает различные проблемы, которые могут включать в себя пороки сердца, расщелину губы/неба (волчья пасть и заячья губа), нарушения иммунной системы, аномальные черты лица и проблемы в обучении;
  • Синдром Вольфа-Хиршхорна (делеция по 4 хромосоме) – это расстройство характеризуется отклонениями в умственном развитии, пороками сердца, плохим мышечным тонусом, судорогами и другими проблемами. Это заболевание затрагивает примерно 1 из 50000 младенцев.

За исключением людей с синдромом Ди Джорджи, люди с вышеперечисленными синдромами бесплодны. Что касается людей с синдромом Ди Джорджи, то эта патология передается по наследству на 50% с каждой беременностью.

Новые методы анализа хромосом иногда могут точно определить, где отсутствует генетический материал, или где присутствует лишний ген. Если врач точно знает, где находится виновник хромосомной аномалии , он может оценить всю степень его влияния на ребенка и дать примерный прогноз развития этого ребенка в будущем. Часто это помогает родителям принять решение о сохранении беременности и заранее подготовиться к рождению немножко не такого, как все, малыша.

Хромосома 15

Мужское и женское начало

В музее Прадо в Мадриде есть пара картин придворного художника XVII столетия Хуана Карреньо де Миранда (Juan Carre?o de Miranda) с названиями «La Monstrua vestida» и «La Monstrua desnuda» («Одетый монстр» и «Раздетый монстр»). На картинах изображена очень толстая пятилетняя девочка Евгения Мартинес Вальехо (Eugenia Mart?nez Vallejo), не красавица, но все же не монстр. Что-то в ее виде не так, как должно быть: необычная для ее возраста полнота, маленькие ручки и ножки, странной формы рот и глаза. Видимо, ее для забавы выставляли в цирке. Врач с первого взгляда на картины скажет, что перед нами типичный случай редкого генетического заболевания - синдрома Прадера-Вилли. Дети с этим синдромом рождаются рыхлыми с мертвенно-бледной кожей, сначала отказываются от груди, но потом начинают есть как не в себя. Им совершенно не знакомо чувство сытости, поэтому они страдают от ожирения. Известен случай, когда ребенок с синдромом Прадера-Вилли, сидя на заднем сидении автомобиля, съел 0,5 кг сырого бекона, пока родители ехали из магазина с покупками. Для людей с этим синдромом характерны короткие руки и ноги, недоразвитые половые органы и слегка заторможенная психика. Часто они закатывают истерики, особенно если им не дают еды, но также для них характерно, как сказал один доктор, «исключительное проворство в собирании паззлов».

Синдром Прадера-Вилли впервые описан в Швейцарии в 1956 году. Мы могли бы отнести этот синдром ко многим другим генетическим заболеваниям, о которых я обещал не рассказывать в этой книге, потому что ГЕНЫ НЕ ДЛЯ ТОГО, ЧТОБЫ ВЫЗЫВАТЬ БОЛЕЗНИ. Но с этим синдромом связана одна интересная особенность, раскрывающая некоторые принципы работы генома. В 1980-х годах врачи заметили, что, как и все остальные генетические заболевания, синдром Прадера-Вилли часто встречается в одних семьях на протяжении нескольких поколений, но временами проявляется как совершенно другое заболевание - синдром Ангельмана. Заболевание настолько другое, что его можно было бы назвать антиподом синдрома Прадера-Вилли.

Гарри Ангельман (Harry Angelman) работал доктором в Уоррингтоне, Ланкашир (Warrington, Lancashire), когда впервые установил взаимосвязь между редкими случаями появления так называемых детей-марионеток и наследуемым генетическим заболеванием. В отличие от синдрома Прадера-Вилли дети с синдромом Ангельмана рождаются с повышенным тонусом мышц, плохо спят, отличаются худобой, гиперактивностью, для них характерна маленькая голова и большой рот, из которого часто выглядывает слишком большой язык. Походкой они напоминают марионеток, поэтому их часто так и называют. Для них также характерно постоянно хорошее расположение духа, улыбка до ушей и приступы неуемного смеха. К сожалению, веселый нрав сопровождается значительной умственной отсталостью. Часто они даже не умеют разговаривать. Дети с синдромом Ангельмана рождаются реже, чем дети с синдромом Прадера-Вилли, но очень часто оба синдрома наблюдаются в одних и тех же семьях в разных поколениях.

Как вскоре стало известно, оба синдрома вызывались проблемами в одной и той же части хромосомы 15. Отличие состояло лишь в том, что в случае синдрома Прадера-Вилли дефект наследовался от отца, тогда как в случае синдрома Ангельмана - от матери.

Этот факт противоречит всему, что мы узнали о генах, начиная еще с Грегора Менделя. Мы говорили, что в основе наследования лежит простая запись информации в виде генетического (цифрового по своей сути) кода. Теперь же мы узнаем, что гены несут в себе не только прописи белков, но и что-то вроде печати в паспорте с указанием места рождения - импринтинг . Нечто особенное есть в генах, полученных от матери и от отца, что позволяет отличить их, как будто в одном из случаев текст генетического кода пишется курсивом. В некоторых тканях работают не оба гена на разных хромосомах, а только материнский или только отцовский. Поэтому мутация в одном и том же гене может проявляться по-разному, в зависимости от того, пришла она от отца или от матери, что и имеет место в случае с синдромами Прадера-Вилли и Ангельмана. Как клетки отличают отцовские гены от материнских, пока до конца не ясно, но некоторые гипотезы уже начинают появляться. Другой интересный вопрос: в силу каких причин в ходе эволюции возник импринтинг материнских и отцовских генов, какие преимущества это дает организму и популяции в целом?

В начале 1980-х годов две группы ученых, работающие в Филадельфии и в Кембридже, одновременно сделали удивительное открытие. Они пытались получить мышь только от одного родителя. Поскольку в те времена клонировать мышь из соматических клеток тела было еще невозможно (ситуация быстро стала меняться после успешного опыта с овцой Долли), группа исследователей в Филадельфии просто слила вместе два проядрышка оплодотворенных яйцеклеток. Когда сперматозоид проникает в яйцеклетку, его ядро с хромосомами еще некоторое время соседствует с ядром яйцеклетки, не сливаясь с ним. Такие ядра внутри яйцеклетки называются проядрышками . Ловкие ученые с помощью пипеток извлекают одно из проядрышек и заменяют его другим. Можно слить проядрышки из двух яйцеклеток или из двух сперматозоидов, в результате чего получается яйцеклетка с полным набором хромосом, но только от отца или только от матери. В Кембридже с этой целью использовали другой подход, но результат получился тот же. И в обоих случаях эксперимент закончился неудачей. Эмбрионы не смогли нормально развиваться и вскоре погибли в матке.

В случае с материнскими хромосомами эмбрион сначала развивался нормально, но не образовывал плаценту, без которой быстро погибал. Напротив, когда в яйцеклетке объединили только отцовские хромосомы, получалась большая плацента и покровы эмбриона, но самого эмбриона внутри не было. Вместо эмбриона разрасталась дезорганизованная масса клеток, в которой нельзя было различить никаких частей тела.

Геном эмбриона наполовину состоит из материнских генов, что может привести к конфликту интересов: должны ли материнские гены больше заботиться об эмбрионе или о самой матери. Отцовским генам эмбриона такой конфликт не грозит. Материнский организм их интересует только с точки зрения предоставления пищи и укрытия на время развития эмбриона. В терминах человеческого общества мужские гены просто не доверяют женским генам такой ответственный момент, как создание плаценты, и берут этот процесс под свой персональный контроль. Именно поэтому у эмбрионов, которые образовались в результате слияния двух проядрышек сперматозоидов, так хорошо получалась плацента.

Исходя из своих чисто теоретических гипотез, Хэйг сделал практические выводы, которые очень скоро подтвердились экспериментально. Так, он предположил, что у яйцекладущих животных не должно быть импринтинга материнских и отцовских генов, поскольку внутри яйца эмбриону бессмысленно спорить с организмом матери о размерах желтка, выделенного для его пропитания. Эмбрион оказывается вне организма матери еще до того, как получает возможность как-либо манипулировать ее организмом. Даже у сумчатых животных, таких как кенгуру, у которых роль плаценты выполняет складка кожи на животе, по гипотезе Хэйга не должно быть импринтинга генов. Сейчас уже известно, что Хэйг был прав. Импринтинг характерен только для плацентарных млекопитающих и для покрытосеменных растений.

Кроме того, вскоре Хэйг с триумфом отметил, что еще один случай импринтинга был зафиксирован для пары генов в геноме мыши именно там, где он предсказывал: в системе регуляции скорости роста эмбриона. Речь идет о гене, кодирующем небольшой белок IGF2, напоминающий инсулин. Этот белок постоянно обнаруживается в тканях эмбриона, но отсутствует у взрослых организмов. В эмбрионе есть другой белок, IGF2R, который прикрепляется к белку IGF2, хотя смысл этого взаимодействия пока не ясен. Возможно, его задача состоит в удалении белка IGF2 из организма. А теперь внимание. Оба гена, IGF2 и IGF2R , диверсифицированы по происхождению: первый считывается только с отцовской хромосомы, а второй - только с материнской. Видимо, здесь мы наблюдаем пример небольшого противостояния между родительскими генами: отцовский ген пытается ускорить развитие эмбриона, а материнский - притормаживает его.

По теории Хэйга половой импринтинг как раз должен проходить по таким конкурирующим парам генов. Подобная ситуация должна проявляться и в геноме человека. Человеческий ген IGF2 на хромосоме 11 также считывается только с отцовской хромосомы. Бывают случаи, когда на одной хромосоме оказывается две копии этого гена, что вызывает синдром Беквита-Видемана. В этом случае сердце и печень вырастают слишком большими. Кроме того, развитие эмбриона часто сопровождается появлением опухолей. Для гена IGF2R у человека импринтинг не обнаружен, но, похоже, эту роль взял на себя другой диверсифицированный ген, H19 .

Если два диверсифицированных гена только то и делают, что воюют друг с другом, наверное, их можно было бы отключить без вреда для организма? Как ни странно звучит эта гипотеза, но такое возможно. Разрушение обоих генов не мешает развитию нормального эмбриона мыши. Мы возвращаемся к теме, которую уже рассматривали на примере хромосомы 8, к вопросу об эгоистичных генах, работающих исключительно ради самих себя и совершенно не заботящихся о процветании организма и популяции. Многие ученые полагают, что в половом импринтинге генов нет никакого рационального зерна с точки зрения пользы для организма. Это лишь еще одно подтверждение теории эгоистичных генов и полового антагонизма.

Как только мы начинаем мыслить категориями эгоистичных генов, в голову приходят неожиданные идеи и гипотезы. Рассмотрим одну из них. Эмбрионы в одной утробе, управляемые отцовскими генами, могут вести себя по-разному в зависимости от того, какой набор генов им достался. Эти конкурентные различия будут особенно сильно проявляться в тех случаях, когда яйцеклетки были оплодотворены семенем разных отцов, что в природе встречается довольно часто. Конкуренция между эмбрионами может вести к отбору более эгоистичных отцовских генов. От подобных рассуждений очень просто перейти к практике и экспериментально проверить нашу догадку. Хорошим объектом исследований являются мыши. Разные виды мышей существенно отличаются своим поведением. Так, для самок вида Peromyscus maniculatus характерны беспорядочные половые связи, поэтому в каждом помете можно найти мышат от разных отцов. В другом виде, Peromyscus polionatus , самки моногамны и сохраняют верность своему единственному избраннику. Все мышата в помете происходят от одного отца.

Что произойдет, если мы скрестим между собой мышей этих двух видов, P. maniculatus и P. polionatus ? Внешний вид потомства будет зависеть от того, к каким видам относились самец и самка. Если взять самца P. maniculatus (с беспорядочными половыми связями), то у самки P. polionatus родятся мышата невероятно крупного размера. Если отцом будет моногамный P. polionatus , то у самки P. maniculatus мышата родятся очень мелкими. Вы уловили суть эксперимента? Отцовские гены вида P. maniculatus развивались в условиях жесткой конкурентной борьбы в утробе за материнские ресурсы с другими эмбрионами, некоторые из которых даже не были их родственниками. Материнские гены P. maniculatus , в свою очередь, развивались таким образом, чтобы позволить матери урезонить свои слишком активные эмбрионы. Отцовские и материнские гены вида P. polionatus эволюционировали в гораздо менее агрессивных условиях, поэтому у самки данного вида не было средств, чтобы противостоять отцовским генам вида P. maniculatus , а отцовские гены P. polionatus были недостаточно активными, чтобы эмбрионы могли взять свое в утробе самки P. maniculatus . Это вело к тому, что в одном эксперименте мышата оказались слишком большими, а в другом - недоразвитыми. Яркая иллюстрация к теме импринтинга генов.

Никакая теория не обходится без изъянов. Данная теория слишком проста, чтобы быть правдоподобной. В частности, исходя из этой теории, можно предположить, что изменения в диверсифицированных генах должны происходить довольно часто, поскольку временный успех одного из генов в паре генов-антагонистов стимулирует развитие другого гена. Но сравнение диверсифицированных генов у разных видов не подтвердило эту догадку. Напротив, оказалось, что такие гены довольно консервативны. Все больше становится ясно, что теория Хэйга объясняет лишь некоторые случаи импринтинга.

Импринтинг генов ведет к удивительным последствиям. У мужчин материнская копия хромосомы 15 содержит в себе знак того, что она пришла от матери. Но уже в следующем поколении у дочери или сына эта же хромосома будет содержать знак отцовского происхождения. В какой-то момент должно произойти переключение знака хромосомы на противоположный. Нет сомнений в том, что такое переключение происходит, поскольку только этим можно объяснить синдром Ангельмана. Никаких видимых повреждений на хромосоме 15 нет, просто две хромосомы ведут себя так, как будто обе произошли от отца. Это объясняется тем, что в нужный момент в организме матери не произошло переключение знака хромосомы. Возникновение данной проблемы можно проследить в поколениях и обнаружить мутацию в небольшом участке ДНК, непосредственно примыкающем к диверсифицированным генам. Это так называемый центр импринтинга , который каким-то образом указывает на происхождение хромосомы. Импринтинг генов осуществляется с помощью метилирования - биохимического процесса, о котором мы уже говорили при рассмотрении хромосомы 8.

Как вы помните, метилирование «буквы» C осуществляется клеткой для того, чтобы отключить ненужные гены и взять под домашний арест эгоистичные самокопирующиеся участки ДНК. Но на ранних этапах развития эмбриона при образовании так называемых бластоцитов происходит деметилирование хромосом. Гены затем вновь метилируются на следующем этапе развития эмбриона - гаструляции. Однако деметилирование происходит не полностью. Диверсифицированным генам как-то удается ускользнуть от данного процесса, при этом активизируется либо только материнский ген, либо только отцовский, тогда как другой парный ген остается метилированным (неактивным). Существует много версий того, как это все происходит, но пока нет ни одного экспериментально подтвержденного варианта.

Именно неполное деметилирование диверсифицированных генов делает такой сложной задачей клонирование млекопитающих. Например, жаб можно очень просто клонировать, взяв ядро из любой клетки тела и поместив его в яйцеклетку. Но такую процедуру не удается выполнить с клетками млекопитающих, поскольку в любой клетке как женского, так и мужского организма какая-то часть генов, важных для развития эмбриона, обязательно отключена в результате метилирования. Поэтому вскоре после открытия явления импринтинга генов было заявлено, что клонирование организма млекопитающих в принципе невозможно. В клонированном эмбрионе диверсифицированные гены будут либо включены, либо выключены на обеих хромосомах, что приведет к дисбалансу в развитии эмбриона. «Таким образом, - делает вывод ученый, открывший импринтинг генов, - успешное клонирование млекопитающих с помощью ядер соматических клеток представляется невозможным».

Тем не менее совершенно неожиданно в 1997 году в Шотландии появилась клонированная овца Долли. До сих пор создателям Долли и других клонов, вскоре последовавших за ним, не совсем ясно, как удалось обойти проблему импринтинга. Похоже, что процедуры, которым подвергалась соматическая клетка перед клонированием, стерли всю информацию о происхождении хромосом.

Диверсифицированный участок хромосомы 15 содержит около восьми генов. Ген, отсутствие которого ведет к развитию синдрома Ангельмана, называется UBE3A . Непосредственно за ним следуют два других гена, которые считают основными кандидатами на роль генов, вызывающих синдром Прадера-Вилли. Эти гены называются SNRPN и IPW . До конца их роль не установлена, но можно предположить, что виною всему является поломка в гене SNRPN .

В отличие от других генетических заболеваний данные синдромы вызваны не мутациями в соответствующих генах, а другими причинами. При формировании яйцеклетки в яичниках обычно ей достается одна пара хромосом. В редких случаях происходит сбой во время разделения хромосом, и в одной яйцеклетке оказываются две парные хромосомы. После оплодотворения такой яйцеклетки в ней уже оказывается три пары хромосом: две от матери и одна от отца. Обычно такое случается при позднем материнстве и заканчивается, как правило, гибелью эмбриона. Только в том случае, если в яйцеклетке оказывается три хромосомы 21, которая является самой маленькой хромосомой человека, эмбриону удается выжить. При этом рождается ребенок с синдромом Дауна. Во всех остальных случаях наличие лишней хромосомы ведет к такой диспропорции биохимических реакций в клетках, что развитие эмбриона становится невозможным.

Яйцеклетка не столь беззащитна перед превратностями судьбы. В короткий период от оплодотворения до начала развития эмбриона она может освободиться от лишней хромосомы. В результате в клетке остается, как и положено, две парные хромосомы. Но в механизме удаления лишней хромосомы не учитывается ее происхождение, поэтому удаление происходит случайным образом. Хотя случайное удаление гарантирует, что в 66% случаев клетка избавится от одной из материнских хромосом, изредка удаляется отцовская хромосома, и развитие эмбриона продолжается с двумя материнскими хромосомами. Опять таки, как правило, это не имеет большого значения, но не в случае с хромосомой 15. Если в яйцеклетке оказались две материнские хромосомы 15, то сразу два гена UBE3A , вместо одного, включаются в работу, но не работает ни один ген SNRPN . И как результат - синдром Прадера-Вилли.

На первый взгляд ген UBE3A не кажется таким уж важным. Его продуктом является E3 убихинон лигаза - белковый клерк среднего уровня с не вполне ясной функцией, которая работает в некоторых тканях кожи и в лимфатических клетках. Позже, в 1997 году, сразу три группы ученых обнаружили, что этот ген включается также в тканях мозга как у мышей, так и у человека. Вот это важное открытие! Оба синдрома, Прадера-Вилли и Ангельмана, указывают на определенные органические повреждения мозга больных. Более того, оказалось, что и многие другие диверсифицированные гены работают в мозгу. При исследовании мозга мыши были получены данные о том, что лобные доли развиваются в большей степени под контролем генов матери, тогда как за гипоталамус несут ответственность отцовские гены.

Дисбаланс был обнаружен с помощью одного тонкого метода, состоящего в создании «химерных» организмов. Химерами в генетике называют организмы, полученные в результате слияния клеток двух генетически неоднородных организмов. Такое случается в природе, в том числе у людей. Человек никогда не догадается, что он является «химерой», если не произвести детальный генетический анализ. Просто два эмбриона на самых ранних стадиях развития объединяются и продолжают развитие как один организм. Можно рассматривать данный феномен как явление, обратное появлению однояйцовых близнецов. Вместо двух организмов с одинаковым геномом, получается один организм, клетки которого содержат хромосомы двух разных геномов.

В лабораторных условиях довольно просто получить химерную мышь. Нужно лишь слегка спрессовать клетки зародышей на ранней стадии развития. Но исследователи из Кембриджа кое-что добавили в данный эксперимент: они объединили нормальный эмбрион мыши с эмбрионом, полученным из яйцеклетки с двумя парами материнских хромосом (в яйцеклетке объединили проядрышки из этой и другой яйцеклетки). В результате получился мышонок с невероятно большой головой. В другом эксперименте второй зародыш получали путем слияния двух проядрышек сперматозоидов, т. е. второй эмбрион содержал только отцовские хромосомы. В этот раз химерный мышонок получался с большим телом, но маленькой головой. Кроме того, клетки с материнскими хромосомами были предварительно обработаны особым образом, в результате чего ученые смогли определить их распределение в эмбрионе. Оказалось, что стриатум, кора головного мозга и гиппокамп у экспериментальной мыши состояли в основном из клеток, управляемых материнскими хромосомами, тогда как такие клетки почти отсутствовали в гипоталамусе. В коре головного мозга происходит обработка сигналов из окружающего мира и формируются поведенческие реакции. Отцовские хромосомы оказались слабо представленными в головном мозге, но их значительно больше в мышечной ткани. Что касается головного мозга, то они оказывают существенное влияние на гипоталамус, гипофиз и предзрительное поле. Эти области мозга лежат в основе «лимбической системы», ответственной за управление эмоциями. Роберт Триверс (Robert Trivers) в шутку сказал, что кора головного мозга берет на себя заботу по общению с родственниками с материнской стороны, тогда как гипоталамус выступает совершенно эгоистичным органом.

Таким образом, если мы рассматривали плаценту как орган, который мужские гены не доверяют женским генам, то женские гены не доверяют мужским генам управление развитием мозга. Если с нашим развитием дела обстоят так же, как у мышей, то мы с вами живем с материнскими мыслями и отцовским характером (это верно лишь в той степени, в какой мысли и характер передаются по наследству). В 1998 году у мышей был обнаружен еще один ген с половым импринтингом, который оказывает существенное влияние на материнское поведение самок мышей. Самки с работающим геном Mest ведут себя как примерные матери. Если этот ген не работает, то внешне самка мыши ничем не отличается от своих подруг, пока дело не доходит до появления мышат. Матери из таких самок получаются ужасные. Они не доводят до конца создание гнезда, они не возвращают в гнездо заблудившихся мышат, не следят за их чистотой и вообще мало уделяют им внимания. Мышата у таких самок обычно погибают. Неизвестно, по какой логике, но этот ген наследуется по отцовской линии. В организме работает только та версия гена, которая находится на отцовской хромосоме, тогда как материнская версия гена блокирована.

С позиций теории Хэйга о генетическом конфликте на этапе развития эмбрионов этот факт трудно объяснить. Интересную теорию для объяснения данного феномена предложил японский ученый Йо Иваса (Yoh Iwasa). Он предположил, что поскольку пол эмбриона устанавливается отцовской хромосомой (либо хромосомой X, либо хромосомой Y), то именно мужская хромосома X должна работать в женском организме, т. е. особенности женского поведения должны задаваться генами хромосом со стороны отца. Если будет работать еще и женская хромосома X, то эффект феминизации будет проявляться и у сыновей, а у дочерей - с удвоенной силой. Отсюда логично заключить, что поведенческий половой диморфизм должен контролироваться мужскими генами.

Лучшим подтверждением этой идеи явился естественный эксперимент, изученный и описанный Дэвидом Скьюзом (David Skuse) с коллегами из Института здоровья ребенка (Institute of Child Health) в Лондоне. Скьюз наблюдал восемь девушек и девочек в возрасте от 6 до 25 лет с синдромом Тернера - генетическим заболеванием, вызванным отсутствием части хромосомы X. У мужчин только одна хромосома X, но у женщин их две, хотя во всех клетках организма работает только одна из хромосом X, тогда как другая инактивируется. По идее отсутствие части хромосомы X у женщин не должно вести к большим проблемам. Действительно, женщины с синдромом Тернера выглядят развитыми как физически, так и умственно, но у них часто возникают проблемы с адаптацией в обществе. Скьюз с коллегами решают изучить поведение большего числа пациентов с данным синдромом и проследить отличия между теми, кто унаследовал дефектную хромосому от отца, и теми, кто унаследовал ее от матери. Двадцать пять девочек с дефектом в материнской хромосоме X легче вливались в коллектив и проявляли «высокую коммуникабельность и хорошие практические навыки, благодаря чему налаживались отношения с коллективом», что отличало их от девочек с дефектом в отцовской хромосоме X. Скьюз с коллегами установили это с помощью стандартных тестов на способность к обучению, а также с помощью вопросников для родителей, в которых предлагалось оценить: насколько ребенок заботлив по отношению к другим людям; чувствует ли он, когда кто-то расстроен или разозлен; учитывает ли он в своих поступках замечания взрослых; насколько капризен ребенок и может ли он обходиться без внимания взрослых; насколько легко его успокоить, когда он расстроен; часто ли он неосознанно обижает других людей; слушается ли он родителей и т. п. Родителям предлагалось выставить своей дочери по каждому вопросу оценку по трехбалльной системе, после чего подсчитывался общий результат. Все девочки с синдромом Тернера оказались более сложными детьми, чем обычные девочки и мальчики их возраста, но оценки были почти вдвое хуже у детей с дефектом в отцовской хромосоме X, чем у детей унаследовавших дефектную хромосому от матери.

Ученые пришли к выводу о том, что где-то на хромосоме X есть ген или гены с половым импринтингом, в результате чего эти гены работают только на отцовской хромосоме и всегда выключены на материнской. Эти гены оказывают какое-то влияние на социальное развитие ребенка, в частности, на его способность правильно оценивать чувства других людей.

Теперь становится ясно, почему аутизм, дислексия и другие проблемы с речью чаще возникают у мальчиков, чем у девочек. У мальчиков только одна хромосома X, унаследованная от матери. Необходимые гены на ней могут быть не только повреждены, но и выключены в результате импринтинга. К моменту написания этой книги такие гены еще не были обнаружены, хотя факты импринтинга других генов хромосомы X известны.

Действительно, на хромосоме X в последние годы было найдено несколько генов, мутации в которых ведут к дислексии и (или) к эпилепсии, но пока нет данных об импринтинге этих генов (de Kovel C. G. et al. 2004. Genomewide scan identifies susceptibility locus for dyslexia on Xq27 in an extended Dutch family. Journal оf medical genetics 41: 652–657; Lu J., Sheen V. 2005. Periventricular heterotopia. Epilepsy & behavior 7: 143–149).

Еще более важный результат состоит в разрешении давнего спора, продолжающегося на протяжении всего XX века: что определяет поведенческий половой диморфизм - природа или социальные условия? Одни ученые пытались все свести к наследственности, отрицая роль обучения и социальных традиций; другие видели во всем влияние социума и отрицали какое-либо наследование поведения. Впрочем, роль обучения и влияния общества никто никогда не отрицал. Споры велись в основном вокруг того, имеет ли наследственность хоть какое-то влияние на поведение мужчины и женщины. Я как раз писал эту главу, когда моя годовалая дочка обнаружила маленькую пластмассовую куклу и вскрикнула от восхищения. Ее старший брат когда-то давно издал такой же крик, когда обнаружил игрушечный трактор. Как и многим родителям, мне не верится, что такое различие в предпочтении игрушек вызывается скрытым влиянием общества на годовалого ребенка. Мальчики и девочки по природе своей имеют разные склонности и интересы. Мальчики больше склонны к соперничеству, проявляют интерес к машинам, оружию и к активным действиям. Девочек больше интересуют окружающие люди, наряды и общение. Не только социальный уклад ведет к тому, что мужчины предпочитают карты, а женщины - романы.

Как подтверждение сказанного выше можно привести один прискорбный случай, произошедший в 1960 году в США. В результате неумело проведенного обрезания у новорожденного мальчика был серьезно поврежден пенис. Доктора решили ампутировать его и, чтобы избежать страданий юноши, провели операцию по смене пола ребенка, превратив его в девочку с помощью хирургического вмешательства и гормональной терапии. Джон стал Джоан и рос (или росла) с куклами и платьицами. Девочка выросла и превратилась в молодую женщину. В 1973 году психолог-фрейдист Джон Мани (John Money) опубликовал свое заключение о том, что Джоан стала нормально развитой девушкой, что еще раз доказывает несостоятельность теорий о генетической предопределенности роли мужчины и женщины в обществе.

До 1997 года никто не удосужился проверить этот факт. Когда Милтон Даймонд (Milton Diamond) и Кейт Сигмундсон (Keith Sigmundson) попытались отыскать Джоан, они нашли мужчину, счастливого в браке со своей женой. Его история отличалась от той, которую рассказал Мани. Ребенок постоянно чувствовал дискомфорт и желание носить брюки, играть с мальчишками и ходить по-маленькому стоя. Когда ему было 14 лет, родители рассказали о произошедшем несчастье, что мальчик воспринял с чувством облегчения. Он прекратил принимать гормоны, изменил свое имя, снова став Джоном, начал одеваться и вести себя как мужчина, согласился на операцию по удалению груди. В 25 лет он женился на женщине и усыновил ее ребенка. Таким образом, этот случай стал ярким примером наследования поведения мужчины и женщины даже вопреки целенаправленному влиянию общества. Наблюдения над животными также свидетельствуют о наследственной основе поведенческих реакций самцов и самок. Мозг - это орган с врожденной половой принадлежностью. Теперь это утверждение подкреплено данными генетиков, обнаруживших гены половых предпочтений и гены с половым импринтингом.

Из книги Собаки и их разведение [Разведение собак] автора Хармар Хиллери

Начало эволюции позвоночных Ланцетник - реликт, живое ископаемое, чудом сохранившееся от давно минувших дней и поныне еще роется в песке на мелководьях теплых морей. Впрочем не совсем так. Некоторые из этих странных создании на дне не живут.«Ланцетники амфиоксиды…

Из книги Наше постчеловеческое будущее [Последствия биотехнологической революции] автора Фукуяма Фрэнсис

Начало схваток За несколько часов до начала схваток влагалище набухает, петля становится очень мягкой, из нее появляются густые, клейкие выделения, которые собаководы часто не замечают, особенно у сук мелких пород. В это же время температура снижается до 37 °C.Щенок

Из книги Думают ли животные? автора Фишель Вернер

Конец и начало Как установили исследователи, выращиваемая в строгой изоляции голубка может начать откладывать яйца лишь после того, как к ней в клетку поставлено хотя бы… зеркало. Физиологически полностью созревшая для кладки яиц голубка остается бесплодной в

Из книги Путешествие в страну микробов автора Бетина Владимир

Начало современных исследований

Из книги По следам минувшего автора Яковлева Ирина Николаевна

Трансформация и трансформационное начало Вернемся еще раз к явлению трансформации, с которой мы уже познакомились в предыдущей главе. Мы видели, что колонии пневмококков подвержены диссоциации, которая проявляется в изменении их свойств. Клетки пневмококков формы S

Из книги Пчелы [Повесть о биологии пчелиной семьи и победах науки о пчелах] автора Васильева Евгения Николаевна

Глава I НАЧАЛО НАЧАЛ На заре жизниБиография жизни - это биография Земли, а всякую биографию обычно начинают с родителей.К сожалению, это не так просто. Подробности рождения Земли до сих пор не ясны даже для специалистов. Большинство современных астрономов, пожалуй,

Из книги Рассказы о биоэнергетике автора Скулачев Владимир Петрович

Конец и начало Как установили исследователи, выращиваемая в строгой изоляции голубка может начать откладывать яйца лишь после того, как к ней в клетку поставлено хотя бы... зеркало. Физиологически полностью созревшая для кладки яиц голубка остается бесплодной в

Из книги Сыроедение против предрассудков. Эволюция в питании человека автора Демчуков Артём

Начало пути Однажды, просматривая в библиотеке биофака новые журналы, я наткнулся на короткую статью в «Нэйчер» под названием «Сопряжение окисления и фосфорилирования механизмом хемиосмотического типа». Автор П. Митчел - новое имя в биоэнергетике. И термин

Из книги Дарвинизм в XX веке автора Медников Борис Михайлович

Начало пути… Не секрет, что в нашем обществе традиционно утвердилось мнение о том, что употребление мяса естественно для человека. В связи с этим «рядовому» представителю этого общества практически не оставляется шансов узнать о последствиях связанных с его

Из книги Тайны пола [Мужчина и женщина в зеркале эволюции] автора Бутовская Марина Львовна

Начало эволюции Чрезвычайно приятно быть частью этого грандиозного эволюционного спектакля, даже если нам придется считать себя прямыми потомками тошнотворных газов и грозовых разрядов. X. Шепли От финиша к стартуМы рассмотрели проблему прогресса в живой природе.

Из книги автора

Мужское и женское тело Антропологические исследования показывают, что мужчины и женщины различаются по строению тела. У мужчин преобладает мышечный тип конституции: для них характерны широкие плечи и узкие бедра. У женщин преобладают астеноидный и торакальный типы